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Chapter 1

Introduction

Many surfaces in nature are superhydrophobic such as lotus leafs, or bird feathers

etc.. A drop of water deposited on such a surface adopts the shape of a nearly

perfect sphere that rolls off easy, leaving no trace of humidity. Such superhy-

drophobicity is achieved by combination of two parameters: intrinsic hydropho-

bicity of the material (wax for example), and roughness or micro-texture. A drop

of water deposited on such a rough hydrophobic surface, rests on the crests of

the texture. This reduces the actual solid-liquid contact, promoting a spherical

drop shape. However a microstructured and hydrophobic surface does not always

guarantee mobility of a droplet placed on it. Under certain external conditions

(electric field, pressure, temperature, light etc.) the liquid can also invade the

texture. Both states result in a rather different behavior of the drop. While a

drop resting on crests of the texture will feature a high mobility, providing repel-

lency and self-cleaning effect, a drop which invades the texture is characterized by

a low mobility providing no liquid repellency and self-cleaning. It is therefore im-

portant to understand the mechanism which of the two states will be adopt on a

given surface with a given liquid. Moreover, the ability to switch the droplet from

one state to the other will allow us to benefit from the characteristic properties

of the states.

Electric field are an excellent tool to control liquids on a small scale. With

an electric field, liquid can be actuated in confined geometries such as channels,

capillaries [1] or between parallel plates [2]. An electric field can move ionized

liquid (electroosmosis), charged particles in a steady liquid (electrophoresis), or
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1. INTRODUCTION

neutral particles (dielectrophoresis). On capillary structures like droplets, an

electric field can deform the shape by elongating the drop along the direction of

the field [3, 4] and an external electrostatic field can be used to move droplets

on planar substrates on demand [5]. Finally the electric field also acts on the

contact angle of a drop, this effect is called electrowetting.

In following sections we introduce established physical concepts as well as

known experimental facts about interfacial aspects of liquids, and liquids on su-

perhydrophobic surfaces. Subsequently, electrowetting as a tool to manipulate

liquid interfaces is described. Applied electric fields not only affect the equilib-

rium shape of a liquid interface, it also gives rise to electrokinetic effects of fluids

near solid walls.

1.1 Surface tension

If a drop of water is placed on a smooth, clean glass surface (a plate, for example),

and another drop on a Teflon frying pan or on greased baking paper, one will be

able to see the difference in the behavior of these drops. On the glass the drop

flattens out whereas on the Teflon or the greased paper it turns into a ball. We

say the drop wets the glass, whereas on a hydrophobic (”water hating”) surface,

such as Teflon, the wetting is only partial. The spherical shape of a drop is a

result of intermolecular forces between the water molecules. A molecule located

within the drop is equally attracted in all directions by the molecules surrounding

it, and so the total force exerted on it is zero (Fig. 1.1 a). In contrast, at the

surface each molecule misses half of its neighbors, i.e. half of its bonds. To bring

a molecule to the surface and create an amount of surface area corresponding

roughly to its cross section, we have to provide the energy required to break half

of its bounds. This energy required to create new surface is the surface energy or

surface tension, typically denoted by γ. Since the sphere has the lowest surface

area per given volume, it is easy to understand that this is also the state with

the lowest surface energy, and that is what causes the drop to take on a spherical

shape.

In different fluids intermolecular forces possess different character and inten-

sity. In organic fluids, such as oil, the attractive forces are a result of momentary

2



1.1 Surface tension

Figure 1.1: (a) The molecules within the drop are equally attracted in all di-

rections, whereas the molecules on the surface of the drop are attracted inward to

their neighbors. (b) Surface forces acting on the three phase contact line of a liquid

droplet deposited on a substrate

electric polarization of the electrons. This polarization creates a non uniform

distribution of electrons in the molecules, and as a result a mutual attraction is

created between every two molecules, similar to the attraction between two mag-

nets. The forces responsible for the attraction are called van der Waals forces,

after the 19th century Dutch scientist. The surface tension between oil and air

resulting from these forces is about 20−50 millijoule per square meter (mJ/m2).

Water is a fluid with many special characteristics resulting from the large perma-

nent dipole of water molecules and their intermolecular hydrogen bonds. Among

other things this leads to the relatively high value of surface tension between

water and air: 72mJ/m2. In mercury, which is a metallic liquid at room temper-

ature, the attractive forces are a result of the free conduction electrons as in solid

metals, and the surface tension reaches 485mJ/m2. Interfacial tension between

two materials depends on their mutual properties, and not just on one of them.

For example, the surface tension of a water drop in air is different from the surface

tension of that same drop in an oil medium. The noted British physicist Thomas

Young, working at Cambridge University, found in 1805 that the contact angle

θ (the angle created between the outer surface of the liquid and the surface on

which it lies, see Fig. 1.1 b.) depends on three interfacial tensions: the interfacial

tension between the liquid and the solid surface γSL, between the surface and the

air γSG, and between the liquid and the air γLG. At equilibrium the three lateral

forces acting on the drop are balanced as the drop does not move (see Fig. 1.1

3



1. INTRODUCTION

b). This force balance can be presented as:

γLGcosθ + γSL − γSG = 0 (1.1)

The Young equation relates the cosine of the angle θ to the three surface

tensions:

cosθ = (γSL − γSG)/γLG (1.2)

The two extreme wetting limits are θ = 1800, which corresponds to a no

wetting case, while θ = 00 is the complete wetting case where the liquid spreads

uniformly over the surface and creates a thin liquid layer. The intermediate case

of θ = 900 is achieved when the difference between γSL and γSG of surface tensions

in the Young equation 1.2 becomes very small. Of course many other cases are

possible with 0 < θ < 1800, and those are the ones of interest of this work.

1.2 Superhydrophobic surfaces

Lotus leaves are known for their water repellency and consequently to remain

clean from any parasitic dust or debris. This phenomenon (also called rolling ball

state) is very common in nature not only for the lotus, but also for nearly 200

other species: vegetables, insects and even some animal species. Fig. 1.2 shows

a typical Scanning Electron Microscope (SEM) picture of a Lotus leaf.

The common point between all water repellant surfaces is their roughness

in combination with low surface energy chemistry. Indeed, the surfaces are com-

posed of micrometric structures limiting the impregnation of the liquid and push-

ing back the drop. Most of the time, the surfaces contain a second scale of rough-

ness, consisting of nanometric size [7, 8, 9, 10, 11, 12, 13]. In order to minimize

its energy, a liquid droplet forms a liquid pearl on the microstructured surface.

The superhydrophobicity term is thus used when the apparent contact angle of

a water droplet on a surface reaches values higher than 1500. Previously, the

studied substrates were regarded as smooth surfaces, i.e. the roughness of the

substrate was sufficiently low and thus does not influence the wetting properties

4



1.2 Superhydrophobic surfaces

Figure 1.2: SEM image of a Lotus leaf [6]

of the surface. In this case, the relation of Young (1.2) gives the value of the con-

tact angle θ on the surface. However, a surface can have a physical heterogeneity

(roughness) or a chemical composition variation (materials with different surface

energies). A new contact angle is then observed, called the apparent contact angle

noted θ∗. It should be noticed that locally, the contact angle between the liquid

droplet and the surface can assume almost any value with these geometries due

to pinning of the contact line. Two models exist which describe the enhancement

of the apparent contact angle: the model of Wenzel [14] and of Cassie-Baxter

[15].

Figure 1.3: Superhydrophobic surfaces: (a) Cassie-Baxter, (b) Wenzel states

A drop on a rough and hydrophobic surface can adopt two configurations: (a)

a Cassie-Baxter configuration (air patches are confined below the drop ) and (b)

a Wenzel [16] (solid/liquid interface exactly follows the solid roughness) ( 1.3 a

5



1. INTRODUCTION

and b). In both cases an increase in the apparent contact angle θ∗ of the drop is

observed.

Figure 1.4: Illustration of the difference between the Cassie-Baxter and Wenzel

states: (a) after deposition of the liquid drops on the surface, (b) after evaporation

[17]

These two models were highlighted by the experiment of Johnson and Dettre

[18]. Many research teams have tried to understand in more detail the superhy-

drophobicity phenomenon and particularly the difficulty of the wetting transition

from the Wenzel to Cassie configuration [19]. For a superhydrophobic surface, a

pronounced difference between the two models is the hysteresis value. The first

experiment on this subject was conducted by Johnson and Dettre (1964) who

measured the advancing and receding contact angles, according to the surface

roughness [18]. For low roughness, a strong hysteresis, up to 1000 (Wenzel), is

observed and attributed to an increase in the substrate surface in contact with

the drop. Starting from a certain roughness (not quantified in their experiment),

the hysteresis becomes quasi null resulting from the formation of air pockets un-

der the drop (Cassie-Baxter state). The receding angle approaches the advancing

angle. Other experiments also show that for a drop in the Cassie-Baxter state,

it is possible to obtain a contact angle significantly higher than for a drop in the

Wenzel state [17]. The drop on the left in Fig. 1.4 is in a Cassie-Baxter state

whereas the drop on the right is in a Wenzel state. After partial evaporation of

the drop (Fig. 1.4 b), the observed angle (which is the receding angle) is similar

to the advancing angle for the drop in the Cassie-Baxter state whereas the drop

in the Wenzel state appears like trapped (pinned) on a hydrophilic surface. In

the following two paragraphs, we will discuss in detail the two models.

6



1.2 Superhydrophobic surfaces

1.2.1 Cassie-Baxter state

Cassie and Baxter did not directly investigate the wetting behavior of liquid

droplets on superhydrophobic surfaces. They were more particularly interested

in planar surfaces with chemical heterogeneity (Fig. 1.5).

Figure 1.5: Planar surface composed of two different and chemically heteroge-

neous materials

The examined surface consists of two materials; each one has its own surface

energy, characteristic contact angle θ1, θ2 and occupies a definite fraction of the

surface φ1 and φ2 (φ1 + φ2 = 1). We assume that individual areas are very small

compared to the size of a drop. Considering a displacement dx of the three phase

contact line, the change of energy dE could be expressed by:

dE = φ1(γ1,SL − γ1,SV )dx+ φ2(γ2,SL − γ2,SV )dx+ γLV dxcosθ
∗ (1.3)

By using the relation of Young, the minimum of (dE = 0) leads to the Cassie-

Baxter relation:

cosθ∗ = φ1cosθ1 + φ2cosθ2 (1.4)

It is to be noted that the apparent angle θ∗ is included in the interval [θ1, θ2].

If material 1 is hydrophobic and material 2 is replaced by air, a drop in contact

with each of the two phases (solid and air) forms respective contact angles θ and

7



1. INTRODUCTION

1800, whereas the fractions of respective surfaces are φs and (1− φs). Thus, the

Cassie-Baxter relation for superhydrophobic surfaces will be:

cosθ∗ = −1 + φs(cosθ + 1) (1.5)

1.2.2 Wenzel state

In the Wenzel state, the drop follows the surface and is impaled on its roughness

(Fig. 1.3 b). In this case, the solid surface/liquid and solid/gas energies are

respectively rγSL and rγSG, where the roughness r is defined as the ratio of real

surface to the projected surface (r > 1 for a rough surface area, and r = 1 for

a perfectly smooth surface). A dx displacement of the three phase contact line

thus involves a variation of energy:

dE = r(γSL − γSV )dx+ γdxcosθ∗ (1.6)

At the equilibrium state (dE = 0), for a null roughness, i.e. for r = 1, we

find the relation of Young. For a nonnull roughness, the relation of Wenzel [14]

is obtained:

cosθ∗ = rcosθ (1.7)

Wenzel’s relation embodies two types of behavior:

1. If θ < 900,(hydrophilic solid) we will have θ∗ < θ since r > 1

2. If θ > 900, we will have θ∗ < θ.

Surface roughness always magnifies the underlying wetting properties. Both

hydrophilic and hydrophobic properties of the solid are reinforced by surface to-

pography. Eq.1.7 also predicts wetting and drying transitions. Since the rough-

ness r is not bounded, there should exist a threshold value r∗ beyond which

wetting becomes either total or zero, depending on the sign of cosθ. This thresh-

old value is given simply by r∗ = 1/cosθ, is easy accessible. For θ = 600, we have

r∗ = 2. However this statement is highly arguable, the Wenzel’s relation is valid

only in certain domain of r.

8



1.3 Transitions between Cassie-Baxter and Wenzel states

1.3 Transitions between Cassie-Baxter and Wen-

zel states

All the favorable properties of superhydrophobic surfaces, such as the self-cleaning

effect and drag reduction capabilities rely on the Cassie-Baxter state, where the

droplet rests on the top of texture. In this state the droplet is highly mobile

and can easy roll off from the surface, providing liquid repellency as well as self

cleaning effect. In contrast, a drop in the Wenzel state is characterized by a low

mobility and high hysteresis. It is therefore is a great interest to understand the

mechanism which of the two states will be adopt on a given surface with a given

liquid. Moreover, the ability to switch the droplet from one state to another will

allow to benefit from both sets of properties characteristic to the states.

These states are (meta)stable states, which mean that a drop of water can stay

in one of these states infinitely long if there is no external factor which changes the

free energy of the drop. This also means that by changing the free energy of the

droplet it is possible to switch from one state to another. However, a reversible

transition from the Wenzel to Cassie-Baxter states is normally very complicated

to achieve because of the existence of (Gibbs) energy barriers between the states

[20, 21]. In particular, it is the transition from the Wenzel to the Cassie-Baxter

state that proves problematic because the base of the liquid drop in the Wenzel

state cannot detach from the solid surfaces. There are several approaches re-

ported in literature to achieve a reversible transition between Cassie-Baxter and

Wenzel states: mechanical [22, 23, 24], magnetic [25, 26], chemical [27], temper-

ature assisted [28, 29], optical [25, 30, 31, 32], electrical [33, 34]. Howewer, in

many of mentioned works only the properties of the surface that are switched

from superhydrophobic to not superhydrophobic. It is more important the abil-

ity to switch a given drop from one state to another. A promising method of

reversibly switching between Cassie-Baxter to Wenzel states is electrowetting,

especially for Lab-on-Chip applications. Although electrowetting induced transi-

tion from Cassie-Baxter to Wenzel state is rather straightforward [35]. Krupenkin

in 2007 demonstrated the first solution for the reversible wetting on such surfaces

[33]. A very short electrical current impulse applied to the substrate leads to

surface heating. The temperature can then reach 2400C, causing liquid boiling

9



1. INTRODUCTION

and droplet expelling from the surface. Even though this technique is easy to

implement, it is hard to imagine such an integrated system within a Lab-on-Chip

for example. The heating would cause significant damage to biological material

within the drop. Moreover, this expulsion creates satellite droplets.

Other teams worked on electrowetting on textured surfaces by using various

materials, like SU-8 [36] or carbon nanotubes (CNT) [34]. In the first case, the

reversibility is only partial. The angle decreases from 1520 to 900 under 130V

and returns to 1140 when the voltage is cut off. In the second case (CNT), no

reversibility is observed. A solution allowing the reversibility is to modify the

surrounding medium. Indeed, the irreversibility is observed when the ambient

medium is air. By replacing air by a hydrophobic medium, like oil (dodecane), it

is possible to obtain reversibility. The angle decreases from 1600 to 1200 when a

voltage was applied and returns back to 1600 after voltage cut off [34].

1.4 Liquids in an electric field

The influence of electric forces on liquid structures can be observed in a simple

”bathroom experiment” when a plastic rod (a hair brush) charged by friction on

clothes is approached to a flowing liquid filament. The interaction between the

charges in the liquid and the charges at the surface of the plastic rod results in

a force which bends the interface. Using an electric field, liquid can be actu-

ated in confined geometries such as channels, capillaries [1] or parallel plates [2].

An electric field can move ionized liquid (electroosmosis), charged particles in a

steady liquid (electrophoresis), or neutral particles (dielectrophoresis). On capil-

lary structures like droplets, an electric field can deform the shape by elongating

the drop along the direction of the field [3, 4] and an external electrostatic field

can be used to move droplets on planar substrates on demand [5]. Finally the

electric force also acts on the contact angle of a drop, this effect being named

electrowetting (more precisely electrowetting on dielectric). The so called elec-

trowetting effect is linked to dielectrophoresis as shown in [2] and has already

been used to actuate liquid in, in particular to reach droplet motion [37], switch

between droplet morphologyes [38] or actuation in confined systems [39].

10



1.4 Liquids in an electric field

In this thesis we mainly focus on two aspects of electric field-liquid interaction:

electrowetting and electrodiffusion.

1.4.1 Electrowetting

The basis of electrowetting has been first described more than a century ago by

a French physicist named Gabriel Lippmann who investigated effects of electro-

capillarity which laid the basis of modern electrowetting (for english translation

Lipmann’s work see [40]). For more details on Lippmanns work and electrowetting

in general, see [40, 41]. Based on his findings, a term due to electric polariza-

tion was added to the Young equation. This generalized equation is called the

Young-Lippmann equation:

γLGcosθE = γSG − γSL + 1/2CU2 (1.8)

where U is the electric voltage and C is the electric capacitance per unit area

in the region of contact between a conducting surface and an electrolyte drop

separated by an insulating layer. Taking into account Young’s equation 1.2 we

can rewrite 1.8 in following form:

cosθE = cosθ +
εoεl

2dHγ
U2 (1.9)

where γ is the surface tension of the liquid, ε0 is vacuum permittivity, εl and dH

are respectively, the dielectric constant and the thickness of the insulator. The

second term in the right hand side is known as the electrowetting number,

η =
εoεl

2dHγ
U2 (1.10)

which measures the strength of the electrostatic energy compared to surface

tension.

To understand how the contact angle reduction is achieved in mechanical

terms one should consider the forces exerted on the liquid by the electric field.

Consider a droplet sitting on a flat dielectric-coated electrode with a voltage ap-

plied between the liquid and the electrode, as shown in Fig. 1.6 b. Assuming

the liquid near the solid/liquid boundary possesses a net charge such that the

11



1. INTRODUCTION

Figure 1.6: (a) A water drop placed on a hydrophobic surface with a high contact

angle. (b) Electrowetting of the surface. Operation of voltage between the drop

and the electrode changes the distribution of charges due to the dielectric insulator

and significantly decreases the contact angle. The two surface coatings are drawn

not to scale.

field is completely screened from the interior of the liquid, the droplet will feel

electrostatic pressure acting in the normal direction at every point on its inter-

face with solid. The fringing electric field formed at the rim of the droplet exerts

electrostatic pressure on the liquid-gas boundary right above the contact line and

hence a net force in the direction parallel to the solid, causing droplet spreading.

From this force one may formulate an electromechanical problem without assum-

ing that the solid-liquid surface tensions are changed by external voltage. For

example, by integrating the Maxwell stress tensor over a control surface around

the liquid-fluid boundary, Jones showed that total force per unit length of con-

tact line is equal to CV 2/2, demonstrating electromechanical derivation of the

electrowetting equation [42]. Jones derivation required no information about the

actual shape of the liquid-fluid interface. Use of the Maxwell stress tensor for cal-

culating the various forces on conductive and dielectric liquid droplets is covered

in-depth by Zeng and Korsmeyer [43].

Use of this approach is particularly important for determinarion of the local

morphology of the drop surface. The local morphology of the drop surface how-

ever does depend on the distribution of the electric field and of electric charges

in the system. As noted above, we assume that the liquid is perfectly conductive.

Hence, E inside the drop and (Et)surf = 0 , i.e. the electric field is oriented

12



1.4 Liquids in an electric field

perpendicular to the surface (t is a local tangent vector at the drop surface). In

this case the electric field gives rise to a Maxwell stress

Πe(r) =
ε0
2
E(r)2 (1.11)

pulling on the liquid surface along the outward normal. The drop surface is in

mechanical equilibrium if electrostatic Maxwell stress is balanced by the Laplace

pressure:

Πe(r) = γ

(
f ′′

(1 + f ′2)3/2

)
(1.12)

Solving equation 1.12 for the drop shape requires the exact distribution of the

electric field, which itself depends on the drop shape. Hence both the drop shape

and the electric field distribution have to be calculated in a self-consistent manner.

Buehrle et al. [? ] developed iterative technique to calculate equilibrium surface

profiles near the three phase contact line.

In Chapters 2 and 4 we use this approach to study possible mechanisms

for the transition from the Cassie-Baxter state to the Wenzel state on super-

hydrophobic surfaces under the influence of electric fields both numerically and

experimentally.

1.4.2 Electrodiffusion

Another example of electric field-liquid interaction is electrodiffusion, which is a

nonlinear transport process whose essence is the diffusion of charged particles to-

gether with their drift in a self-consistent electric field. It is in fact the diffusion in

a ”preferred” direction which follows from the fact that the electric field induces

a force on a charged particle balanced by the effective force of friction due to col-

lisions with other solute or solvent particles. Basic equations of electrodiffusion

were obtained about 120 years ago by Nernst and Planck in application to the

motion of ions. About 60 years ago Van Roosbroeck [44] used these equations to

treat the transport of holes and electrons in semiconductors. Most applications

of the theory of electro-diffusion relate to electrophysiology, electrochemistry and
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1. INTRODUCTION

chemical and electrical engineering. These are concerned, respectively with ner-

vous conduction, ion separation, electric energy production, desalination of saline

water, and semiconductor device technology.

Passage of an electric current through a solution adjacent to an ion-selective

interface results in the formation of an electrolyte concentration gradient. This

effect is called concentration polarization[45]. The expression of concentration po-

larization is the typical nonlinear steady-state voltage/current (VC) dependence,

schematically depicted in Fig. 1.7. The following three regions are distinguish-

able in such a curve: linear (Ohmic) Region I is followed by current saturation in

Region II (limiting current), which is in turn followed by inflexion of the VC curve

and transition to ”over limiting” conductance regime (Region III), accompanied

by the appearance of low-frequency excess electric noise.

Figure 1.7: Sketch of a typical voltage current curve of a cation-exchange mem-

brane

For a given flow, polarizability of a perm-selective ion-exchange membrane

by a DC current is determined by geometric factors, such as, the typical size

of the ion-permeable ”gates” at the membrane surface in relation to the sepa-

ration distance between them and the diffusion layer thickness. On the other
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1.4 Liquids in an electric field

hand, the major factor determining the value of the limiting current through

any charge-selective solid is hydrodynamics. Thus the limiting current may be

increased by increasing the flow velocity past the membrane, thereby reducing

concentration polarization. The source of this effect becomes particularly clear

if one distinguishes between the bulk of the fluid where the solute transport is

entirely dominated by convection, and the diffusion boundary layer (often called

”unstirred” or Nernst layer) where the transport is electrodiffusion dominated.

The classical theory of concentration polarization predicts a true saturation of the

Figure 1.8: Sketch of quiescent polarization cell and steady-state electrolyte con-

centration polarization in it.

VC curves at the limiting current, offering no explanation for the ”over-limiting”

conductance [45]. For definiteness, consider an ”unstirred” layer of thickness δ

of a univalent electrolyte adjacent to an ideally perm-selective homogeneous in-

terface (e.g., a cation-exchange membrane) (Fig. 1.8). Let us direct the axis y

normally to this interface, with the origin at the membrane-solution interface and

y = −δ coinciding with the outer (bulk) edge of the ”unstirred” layer. Let us

assume local electroneutrality and neglect the electroosmotic flow. With these

assumptions, stationary ionic transport across the ”unstirred” layer will be de-

scribed by the following boundary value problem:

D

(
dc

dy
+

F

RT
c
dφ

dy

)
= −j = − i

F
(1.13)

dc

dy
− F

RT
c
dφ

dy
= 0 (1.14)
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c(−δ) = c0 (1.15)

φ(−δ) = 0 (1.16)

φ(0) = −V (1.17)

Here, y, c, φ, j, i and V are, respectively, the dimensional coordinate, ionic

concentration, electric potential, cation flux, electric current density, and voltage

drop across the ”unstirred” layer, whereas c0 is the bulk concentration, F is the

Faraday constant, R is the universal gas constant, T is the absolute temperature,

and D is the cation diffusivity. Equations 1.13 and 1.14 are the stationary Nernst-

Plank equations for electrodiffusional transfer of cations and anions, respectively.

Integration of 1.13-1.17 yields:

c = c0

[
1−

(
j

2Dc0

)
(y + δ)

]
(1.18)

φ =
RT

F
ln

[
1−

(
j

2Dc0

)
(y + δ)

]
(1.19)

i =
2FDc0
δ

(
1− e−

V F
RT

)
(1.20)

For, V →∞ Eq. 1.20 predicts

i→ ilim =
2FDc0
δ

(1.21)

Let us note that for V = O(1) and i < ilim the structure of diffusion layer is

characterized by the splitting into quasi-electro-neural bulk and a thin boundary

layer: quasi-equilibrium electric double layer. This picture breaks down upon i→
ilim as reflected, in particular, in the inconsistency of the local electroneutrality

approximation, which appears in the basic concentration polarization solution

1.18, 1.19. For V >> O(1) and i → ilim quasi-equilibrium electric double layer

expands and transforms into non-equilibrium electric double layer characterized

by the presence of the extended space charge region [46].
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1.5 Outline of the thesis

As shown in [46, 47, 48], the development of the non-equilibrium electric

double layer with the extended space charge region has a strong effect on vari-

ous electrokinetic phenomena and results in the appearance of non-equilibrium

electrokinetic phenomena such as electrophoresis of the second kind, electroos-

motic slip of the second kind et.c. In particular, non-equilibrium electroosmotic

slip instability and resulting electroconvection in concentration polarization can

break current saturation as shown in [46]. Thus, the study of the electric double

layer dynamics at the limiting current, in particular, its transition from quasi-

equilibrium to non-equilibrium regimes, is an essential component of the general

study of non-equilibrium phenomena in electrodiffusion.

The Chapter 6 of this thesis is dedicated to experimental study of electroos-

motic instabilities near the charge selective membrane.

1.5 Outline of the thesis

This thesis is presented in six chapters. Chapter 1 presents a brief introduc-

tion to the wetting phenomenon, liquid behaviour on superhydrophobic surfaces.

Then we discuss electrowettnig and electrodiffusion as a tool to manipulate liq-

uids at the interfaces. In Chapter 2 We discuss the equilibrium shape of the

composite interface between superhydrophobic surfaces and drops in the super-

hydrophobic Cassie-Baxter state under upplied electric field. We demonstrate

that the equilibrium shape of the interface is determined by the balance of the

Maxwell stress and the Laplace pressure. Energy barriers due to pinning of con-

tact lines at the edges of the hydrophobic pillars control the transition from the

Cassie to the Wenzel state.

As a natural follow up to the Chapter 2 in Chapter 3 we present two

approaches for electrowetting induced reversible transitions between the Cassie-

Baxter to the Wenzel states. We show how the electrowetting effect can be

used for achieving locally switching between the two wetting states using suitable

surface and electrode geometries.

In Chapter 4 we study possible mechanisms for the transition from the

Cassie-Baxter state to the Wenzel state on superhydrophobic surfaces under the

influence of electric fields as a function of the aspect ratio and the wettability
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1. INTRODUCTION

of the surface, both numerically and experimentally. Fully self-consistent cal-

culations of both electric field distribution and surface profiles show that this

instability evolves from a global one towards a local Taylor cone-like instability

for increasing aspect ratio of the cavities, which were confirmed with our experi-

mental results

In Chapter 5 we investigate the wetting phenomenon of a drop on a sphere

geometry. For this geometry we confirmed the predictions from free energy cal-

culations with experimental results an determined under which conditions the

droplet will wet the sphere.

Finally in Chapter 6 we present the first direct experimental visualization

of a theoretically predicted hydrodynamic instability of ionic conduction from a

binary electrolyte into a charge selective solid. At steady state, upon the passage

a DC current, current/voltage dependence exhibits a characteristic saturation

at the limiting current. Upon a further increase of voltage, current increases

marking the transition to the overlimiting conductance regime. We show that

this transition is mediated by the appearance of a vortical flow that increases

with the applied voltage in the overlimiting regime.
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Chapter 2

Electrical switching of wetting

states on superhydrophobic

surfaces

2.1 Abstract

In this chapter we demonstrate that the equilibrium shape of the composite inter-

face between superhydrophobic surfaces and drops in the superhydrophobic Cassie-

Baxter state under electrowetting is determined by the balance of the Maxwell

stress and the Laplace pressure. Energy barriers due to pinning of contact lines

at the edges of the hydrophobic pillars control the transition from the Cassie to

the Wenzel state. Barriers due to the narrow gap between adjacent pillars control

the lateral propagation of the Wenzel state. For large pillar spacing, the Wen-

zel state propagates over the entire drop-substrate interface, for small spacings

inhomogeneous partially collapsed states can be obtained.1

1Part of this chapter has been published in ”Electrical Switching of Wetting States on

Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions”, G.

Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele [49].
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2. ELECTRICAL SWITCHING OF WETTING STATES ON
SUPERHYDROPHOBIC SURFACES

2.2 Introduction

Superhydrophobic surfaces display remarkable properties including ultrahigh con-

tact angles, ultralow contact angle hysteresis [50], large hydrodynamic slip [51,

52, 53], and tunable optical diffraction [54, 55]. These properties rely on the weak

interaction between the liquid and the substrate due to the entrapment of air (or

vapor) in the cavities of the rough surface topography. At the transition from

the superhydrophobic “Cassie” state to the normal “Wenzel” wetting state, the

gas from the cavities is expelled and the interaction between the liquid and the

substrate increases dramatically. The contrasting properties of the Cassie and

the Wenzel state make it particularly attractive to design surfaces that allow for

switching between the two wetting states. Various external control parameters

have been used to trigger the transition from the Cassie to the Wenzel state,

including hydrostatic pressure, optical and chemical stimuli (see [56] for a re-

view), as well as electric fields [33, 34, 35, 36, 57, 58]. In particular, the latter

offers opportunities for fast and precise fine-tuning of the wetting state. Yet, a

microscopic understanding of the mechanism controlling the properties of the su-

perhydrophobic state under electrowetting (EW) conditions and in particular the

stability limit of the Cassie state is lacking [58, 59]. Such a detailed understanding

will be crucial to reach the holy grail of reversible switching between these states,

which has so far been limited to a few special cases involving partial evaporation

[33], violent mechanical shaking [60], and specific water-in-oil systems [34].

In this chapter we analyze the properties of liquid drops on superhydrophobic sur-

faces consisting of periodic arrays of micrometer-sized posts under electrowetting.

Using reflection contrast interference microscopy, we determine the deflection of

the composite water-air interface under the influence of an applied voltage. We

identify the dimensionless parameters that control the reversible deflection of the

interface at low voltage and we show that the critical voltage for inducing the

Cassie-to-Wenzel transition is determined by the depinning of the three-phase

contact line from edges at the top of the posts.
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2.3 Materials and methods

2.3 Materials and methods

2.3.1 Sample preparation

Superhydrophobic surfaces were prepared in cleanroom using photolithography

technique. ITO covered glass was spin-coated with 5µm thick SU-8 3005 photore-

sist, then exposed with UV light and developed. This provides an homogenous

layer of a dielectric (thickness d = 5µm ; dielectric constant ε = 3.2), which pre-

vents the samples from breakdown when under electric field the microcavities are

filled with water. On top of that homogeneous layer the microstructure was made,

square lattices of round pillars (diameter 2a = 5µm ; height h = 5µm distance

between the pillars d = 3, 5, 8 and 10µm) . Note that the geometry chosen here

resembles the one of [36] rather than [33, 35, 58] . In the latter case, the electric

field acts as a means to reduce the contact angle, whereas in the present experi-

ments it acts everywhere along the micromenisci at the drop-substrate interface.

The corresponding values of Wenzel surface roughness factor r = Areal/A ( Areal:

true solid surface area following the topography; A : projected surface area) and

of the fractional area f of the pillars are given in Table 2.1. The surfaces are

hydrophobized by dip-coating from a 0.01% Teflon AF (Dupont) solution, which

preserves the original pillar geometry (see Fig.2.1a) and produces a contact angle

on the flat surface area next to the pillar array of θY ≈ 1150 − 1200.

d(µm) r f

3 2.23 0.307

5 1.79 0.196

8 1.46 0.116

10 1.35 0.087

Table 2.1: Sample characteristics. r: Surface roughness, f : fractional area.

2.3.2 Experimental setup

The experimental setup consists of a millimeter-sized sessile drop (DI water) on

a superhydrophobic surface as shown in Fig 2.1b. Inserting the values of θY , r
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2. ELECTRICAL SWITCHING OF WETTING STATES ON
SUPERHYDROPHOBIC SURFACES

Figure 2.1: (a) System configurations. (a) SEM image of Teflon coated mi-

crostructure. (b) Electrowetting setup: a voltage U is applied between a droplet

and an electrode covered with a dielectric micro-patterned surface. The contact

area is monitored with an inverted microscope from the bottom through the super-

hydrophobic substrate. (c) The unit cell of microstructure. (d) Magnified sketch of

the solid-liquid interaction area. Blue arrows: optical rays leading to interference.

Red arrows: electric field distribution (shown only close to contact line).

and f into the standard expressions [50] for the energies GC and GW per unit

area of the Cassie and the Wenzel state, respectively, shows that (GC−GW )/σ =

(r−f)cosθY +(1−f) is positive, i.e. that the Wenzel state is thermodynamically

favorable, for all samples except for the smallest pillar spacing. As usual in EW

experiments, the macroscopic drop shape is controlled by applying a voltage

(here: DC) between the drop via an immersed metal wire and the ITO electrode.

The drop-substrate interface is illuminated from below with monochromatic light

(λ = 510nm) and observed in reflection mode using an inverted microscope.

2.4 Observations

Upon linearly increasing the applied voltage the drop spreads and the (except for

some faceting for closely spaced pillars) circular drop-substrate interfacial area

increases (see Fig.2.2). In the reflected light, the SU-8 pillars appear dark since

the illuminating light is largely transmitted through the polymer-water interface
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2.4 Observations

Figure 2.2: Spreading of droplet on the superhydrophobic surface by ramping the

voltage (d = 5µm). Voltage increases from left to right : (a) 0V the Cassie state,

the entire contact area is shown: the droplet touches the tops of the microscopic

pillars, (b)-(g) Magnified views of the black rectangle region in (a) at U = 0 ∼ 250V

for every 50V , respectively. Black dots appeared near the contact line in (d)-(g)

represent the area in the Wenzel state. Inset: magnified view of the solid-liquid

contact area at maximal deflection of menisci.

(due to near index-matching conditions), whereas the air-filled area in between

appears bright with some lateral intensity variations due to interference of the

light that is partially reflected at the solid-air and at the liquid-air interface,

respectively (see Fig.2.1b and inset of Fig.2.2). As the voltage increases, the in-

terference pattern changes reversibly.

At a certain critical value , the area between some of the pillars along the edge of

the drop, i.e. along the macroscopic apparent contact line, turns dark, indicating

that these pits have been filled with water, as shown in Fig.2.2e. The subsequent

behavior depends strongly on the pillar spacing. For the smaller spacings (3 and

5µm ), more and more individual pits turn dark one after the other (Fig.2.2f and

g) while neighboring pits can remain air-filled. The drop-substrate interface is

then inhomogeneous displaying a Wenzel-like state with water-filled pits along

the apparent contact line and a Cassie-like state with entrapped air in the central

region. In contrast, for the larger pillar spacings the region with water-filled pits

spreads within ∼ 2−3ms across the drop-substrate interface leading to a homoge-
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neous Wenzel state except for typically one air bubble in the center that dissolves

on a longer time scale. Occasionally, for intermediate pillar spacings of 5µm , we

also observed a mixed scenario: pits in the neighborhood of already filled pit have

a higher probability of becoming filled. Yet, rather than spreading homogenously

over the entire drop-substrate interface, branched lines and occasionally clusters

of collapsed pits appear (see Fig2.3a).

Figure 2.3: Final state after transition to Wenzel state. (a) (d = 3µm): het-

erogeneous drop substrate interface with linear structures of dark filled pits. (b)

(d = 10µm): homogeneous Wenzel state, except for three bright bubble (right).

To study the Cassie-to-Wenzel transition in more detail, we analyze the inter-

ference pattern originating from the deformable water-air interface. The interfer-

ence pattern in the inset of Fig2.2 indicates that the deflection of the interface

is maximal in the center of the pits between four neighboring pillars. In between

two adjacent pillars, the surface displays a saddle point. To quantify the defor-

mation of the interface, we extract the intensity averaged over the central area of

typically 9 adjacent cavities as a function of the applied voltage, (see Fig.2.4). As

long as the applied voltage does not exceed the critical voltage Uc, the interface

reversibly bends up and down indicating that the microscopic three-phase con-

tact lines along the edges of the pillars remain rigidly pinned. From the number

of maxima and minima of the interference pattern, it is obvious that the max-

imum deflection is less than twice the wavelength of the incident light. Given

the spacing between the pillars, this implies that the overall deformation of the

water-air interface remains moderate. Thanks to the resulting small slopes, we

can determine the deflection ζ0 of the water-air interface simply by considering
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2.4 Observations

the interference of plane waves [61]: As shown in Fig.2.4 b, the resulting deflec-

tion increases with increasing voltage up to Uc, where the system undergoes the

transition to the Wenzel state. As intuitively plausible, for any fixed voltage the

deflection increases and Uc decreases with increasing pillar spacing (see Table

2.1).

Figure 2.4: a: Variation of the reflected light from micropits during the linear

voltage ramp from 0 to 175V and back to 0, for distance between posts d=5µm. b:

maximal deflection of the meniscus as a function of applied voltage for d = 10, 8, 5

and 3µm
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2.5 The model

The deflection of the interface is due to the electric field ~E and the resulting

Maxwell stress πel = εε0E
2/2 ( ε0: vacuum permittivity; ε: relative permittivity

of medium in cavities in Cassie state, i.e. ε = 1 for air) pulling outwards along the

surface normal. In mechanical equilibrium, πel is locally balanced by the Laplace

pressure ∆pL = σκ of the curved interface, where σ is the surface tension and κ

the mean curvature of the water-air interface:

πel(x, y) = pL(x, y) (2.1)

Denoting the local deflection of the water-air interface away from the flat

configuration as ζ(x, y) , the mean curvature in small slope approximation is

given by κ = ∂2ζ/∂x2 + ∂2ζ/∂y2 . Since the electric field distribution depends

on the shape of the water-air interface, finding the equilibrium shape requires in

principle a self-consistent calculation of both field distribution and surface profile,

as for instance in the case of surface profiles close to the three-phase contact line

in EW [62]. Given the small slopes of the water-air interface, the present electrical

problem can be simplified assuming a locally flat configuration with a position-

dependent local deflection resulting in an electric field E(x, y) = U/zeff at the

liquid surface, where zeff = H − ζ(x, y) with H = h + hdε/εd ≈ 6.5µm , is the

effective dielectric spacing between the water-air interface and the electrode. We

rescale the xand y coordinates by the radius R =
√

2(d/2 + a)− a (see Fig.2.1c)

writing x = uR and y = vR and the vertical coordinate z by the effective thickness

H writing z = wH . Eq.2.1 then assumes the dimensionless form:

∂2w

∂u2
+
∂2w

∂u2
=

Λ2

w2
(2.2)

where Λ = R/Hη1/2 with η = εε0U
2/2Hσ is a dimensionless number measuring

the relative strength of electrostatic and surface tension forces. Note that Λ is

given by the square root of the usual EW number η (see e.g. [40]) modified by

the ratio of the lateral over the vertical length scale.

Eq.2.2 can be solved numerically using periodic boundary conditions with a

quadrant of the unit cell with u, v ∈ [0, (a + d/2)/R] and a finite differences

relaxation scheme. The boundary conditions read w = 1 along the edge of the
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2.5 The model

Figure 2.5: (a)-contour plot of ζ for d = 5µm numerically solved by Eq2.2.

(b)-numerical profiles corresponding to the experimentally observed maximum de-

flection (solid) and the profiles for the numerically obtained maximum deflection

(dashed), respectively, along the 3-principal directions, which are designated in

Fig.2.5(a).

pillar (implying contact line pinning) and, for symmetry reasons, ∂w/∂u = 0

for u = 0 and u = (a + d/2)/R and similarly ∂w/∂v = 0 for v = 0 and v =

(a + d/2)/R. Note that the full problem depends via the boundary condition

also on the dimensionless ratio a/R , which varies between 0.3 and 0.8 in the

experiments. The numerical solution reproduces the characteristic shape of the

air-water interface with its maxima of the deflection in the centers of the pits

and the saddle points in between two adjacent pillars is given in Fig. 2.5. The

contour-plot in Fig. 2.5(a) represents a complex three-dimensional deformation of

the liquid-vapor interface. Fig. 2.5(b) shows the numerical profiles corresponding

to the experimentally observed maximum deflection (solid) and the profiles for

the numerically obtained maximum deflection (dashed), respectively, along the

3-principal directions, which are designated in Fig. 2.5(a). Here, α is determined

from the diagonal profile (green), which also fits well with parabola shape (solid

black).
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2.6 Results and disscussion

According to the analysis described in previous section, the normalized deflec-

tion ζ0/H should collapse if plotted versus the normalized parameter Λ,which is

indeed the case (see Fig. 2.6). The solid lines in the panel of Fig. 2.6 show ζ0

vs Λ for d = 10, 8, 5 and 3µm , respectively. While the model results and the

experimental data agree very well for small Λ, we systematically underestimate

the deflection for larger Λ. This is due to the parallel plate approximation in the

calculation of the electric field, which neglects field enhancement effects due to

the finite curvature of the interface (Additional finite element calculations per-

formed for flat air-water interfaces indicated that deviations in the electric field

can become of order 10%, leading to 20% corrections to the Maxwell stress, in

agreement with electrostatic calculations of the field experienced by a conductive

sphere in front of a conductive plane). More importantly, however, the maximum

deflection obtained numerically, the end point of the gray parts of the numerical

results, which is beyond the scale of Fig. 2.6, is much larger than found experi-

mentally.

What is the origin of this discrepancy and what determines the transition from

the Cassie-Baxter to the Wenzel state? The numerical solutions become unstable

as soon as the additional electrostatic energy gain for an incremental additional

surface deflection outweighs the additional cost in interfacial energy. The corre-

sponding interface deflections are more than twice the experimentally observed

maximum deflections (see Fig. 2.6). Analyzing the numerical interface profiles re-

veals three important observations: (i) The angle between the air-water interface

and the vertical side wall of the pillars is α ≈ 1500 for the maximum Λ yielding

stable numerical profiles. This values is much larger than the advancing angle

θadv on the sidewall of the pillars. Hence, these solutions will not be observable

experimentally due to depinning of the contact line. (ii) For the numerical pro-

files corresponding to the maximum deflection found in the experiments, we find

the angle between the air-water interface and the vertical side wall of the pillars

is close to 1100, in reasonable agreement with θadv (see Table 2.2). (iii) Similarly,

extracting the critical angles from the maximum experimental deflection using

the approximately parabolic surface shape (as justified by the numerical results;
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see Fig. 2.5) yields critical angles of the order αc ≈ 1100 (see Table 2.2). Hence,

we conclude that the stability limit of the Cassie state is determined by the limit-

ing angle w.r.t. the side wall, for which the microscopic three-phase contact lines

remain pinned along the edges of the pillars. Upon exceeding this critical angle,

the contact lines depin, move downward towards the flat bottom of the super-

hydrophobic surface and cause the transition to the Wenzel state. The stability

limit is thus the same as in the case of a pressure-driven Cassie-to-Wenzel transi-

tion [55, 63] This result is not trivial. Exact calculations of the field distribution

and surface deformation for a two-dimensional system show that the transition

in that case can also be initiated by an instability of the air water interface in

the center of a pit [64] indicating that the actual geometry of the interface can

plays an important role.

d(µm) θ∗ αc Uc(V ) U∗(V )(β = 0.5)

3 1030 1100 225 270

5 1090 1150 175 177

8 1160 1080 123 91

10 1200 1090 105 0

Table 2.2: θ∗: critical angle for spontaneous propagation of the collapse,αc: crit-

ical angle at the transition as obtained from the experiments, Uc(V ): critical volt-

age at which transition occurs, and U∗(V )(β = 0.5): estimated value for voltage

at which the collapse will propagate

To understand why the transition nucleates along the apparent contact line,

we note that the electric field between the drop and the substrate is not homoge-

neous in electrowetting. For flat substrates, sharp edge effects along the contact

line give rise to a divergence of the electric fields in a region with a characteristic

extension given by the thickness of the insulator [40]. For the present structured

surfaces, the surface geometry and thus the field enhancement effects are more

complex. Along the macroscopic contact line, there are sections of the microscopic

contact lines with local contact angles of the same order as the macroscopic con-

tact angle. Along these sections field enhancement leads to an increased Maxwell

stress pulling the air-water interface downwards. Two-dimensional numerical es-

timates show a field enhancement up to 30%, explaining the observed nucleation
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along the apparent contact line.

Finally, we address the propagation of the Wenzel state across the drop-substrate

interface. In order to propagate from one filled pit to the next, the liquid has to

pass the gap between two adjacent pillars, which has the width d. The energy

gain upon advancing by a distance δx within this gap is δG = δx[(2h + d)(σ −
σsl)+d(σ−(CC−CW )U2/2)], where CC and CW are the local capacitances in the

Cassie and in the Wenzel state, respectively. Analogous to the situation without

electric field [65], propagation is expected if δG > 0 . Writing the (positive)

differential capacitance as CC − CW = βε0(εd/hd − ε/H) = βε0εh/Hhd , where

β is a correction factor of order unity accounting for the exact field distribu-

tion, this criterion yields a geometry-dependent critical voltage U∗ above which

propagation of the Wenzel state is energetically favorable:

Figure 2.6: Normalized deflection versus normalized electrostatic force . Symbols:

experimental data for variable post spacing d = 10µm (red) squares], 8 (black

circles), 5 [(blue) up triangles], and 3µm [(green) down triangles]. Symbols with

lines: numerical calculations. Inset: Zoomed view of main panel.

U∗ = U0

√
εhd
βεdh

(
cos θY
cos θ∗

− 1

)
(2.3)

Here represents the critical angle, for which spontaneous propagation at zero
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voltage occurs [65] and is the characteristic voltage related to the electrowetting

number. Propagation of the Wenzel state is expected if for a given sample. For

this condition is indeed fulfilled for two largest spacings whereas it is not fulfilled

for the smallest spacing (see Table 2.2), confirming that the model correctly

captures the physical effects controlling propagation of the Wenzel state.

2.7 Conclusions

The results described here demonstrate the flexibility and the control of super-

hydrophobicity that can be achieved using electric fields. At low voltages, the

reversible bending of the micromenisci allows for detailed tuning of both hy-

drodynamic slip [66] and of optical diffraction from such surfaces [55].For the

irreversible transition to the Wenzel state, we clearly identified that depinning

of the contact lines determines the critical voltage. Combined with the criterion

for the co-existence of the Cassie state and the Wenzel state, we are confident

that this principle will enable the design of novel surface and electrode geome-

tries, allowing for local and probably even reversible switching between the two

competing wetting morphologies.

31



2. ELECTRICAL SWITCHING OF WETTING STATES ON
SUPERHYDROPHOBIC SURFACES

32



Chapter 3

Electrically induced reversible

transitions on superhydrophobic

surfaces

3.1 Abstract

In this chapter, we present two approaches to achieve electrowetting induced

reversible transitions from the Cassie-Baxter to the Wenzel states on superhy-

drophobic surfaces. We will show that oscllations of three-phase contact line

under low frequenciy electric field, is able to initiate a transition from the partial

Wenzel to the Cassie-Baxter state. We also will demonstrate reversible transitions

using patterned electrodes.1

1Part of this chapter has been published in ”Electrical Switching of Wetting States on

Superhydrophobic Surfaces: A Route Towards Reversible Cassie-to-Wenzel Transitions”, G.

Manukyan, J. M. Oh, D. van den Ende, R. G. H. Lammertink, and F. Mugele [49].
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3.2 Introduction

An important area of application of superhydrophobic surfaces is reversible super-

hydrophobicity. That is the ability of a surface to switch between the hydrophobic

and hydrophilic properties under the influence of the, light irradiation (ultraviolet

or visible), or temperature, etc. [22, 23, 25, 25, 26, 27, 28, 29, 30, 31, 32, 34] .

Howewer, in many of mentioned works only the properties of the surface that are

switched from superhydrophobic to not superhydrophobic. It is more important

the ability to switch a given drop from one state to another. This area of research

has emerged since 2004, and a number of important findings have been made, in-

cluding the ability to switch between the Cassie-Baxter and Wenzel states by

using electrowetting effect [35]. In 2007 Krupenkin et al. [33] reported that

droplet behavior can be reversibly switched between the Cassie-Baxter state and

the Wenzel state. They demonstrated the first solution for the reversible wetting

on such surfaces. A very short electrical current impulse applied to the substrate

leads to surface heating. The temperature reaches 2400C, causing liquid boiling

and droplet expelling from the surface. Even though this technique is easy to im-

plement, it is hard to imagine such an integrated system within a Lab-on-Chip.

For biological applications the heating would cause significant damage within the

drop. Moreover, this expulsion creates satellite droplets.

The key factors for achieving reversible transitions from the Cassie-Baxter to

the Wenzel states are: (i) thermodynamically favorable Cassie-Baxter state for

the droplet, and (ii) presence of entrapped air in Wenzel state. The second factor

may be achieved in two ways: via using double-scale (micro/nano) roughness [12],

at which even if at micro scale the droplet will be in the Wenzel state, there will

be air entrapped in nanoscale, or by controlled partial transitions to the Wenzel

state. In both cases the drop-substrate interface remains vapor filled, such that

the reverse switch only requires the motion of contact lines but not the nucleation

of the vapor ”from scratch.”

In this chapter we demonstrate two approaches of electrowetting induced re-

versible transitions from the Cassie-Baxter to the partial Wenzel state. In our

firs approach we attempt to use electrowetting induced vibrational energy of the

oscillations of a droplet at metastable Wenzel state to switch it to the Cassie
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oscillations

Baxter state. The second approach is to use patterned electrodes under the mi-

crostructure. This allows us to transform the surface only locally into the Wenzel

state above activated patterned electrodes

3.3 Wenzel to Cassie-Baxter transitions using

low frequency oscillations

The first approach is an electrical analogous of mechanical vibration induced

Wenzel to Cassie-Baxter transition [24]. In their experiments Boreyko et al. used

mechanical vibrations to overcome the energy barrier for the transition from the

sticky Wenzel state to the non-sticking Cassie-Baxter state. In case of ac elec-

trowetting at low-frequency range, they observed shape oscillation of a droplet

in [67, 68]. This oscillation results from the time-varying electrical force con-

centrated on the three-phase contact line. In this study we attempt to use elec-

trowetting induced vibrational energy of the oscillations of a droplet at metastable

Wenzel state to switch it to the Cassie-Baxter state instead of mechanical vibra-

tion of the substrate described in [24].

3.3.1 Materials and methods

The samples for this experiment were prepared in similar manner as for the ex-

periments described in chapter 1. Superhydrophobic surfaces were prepared using

photolithography technique: ITO covered glass was spin-coated with 5µm thich

SU-8 3005 photoresist, then exposed at UV light and developed. This provides

an homogenous layer of a dielectric (thickness d = 5µm ; dielectric constant

ε = 3.2), which prevents the samples from breakdown when under electric field

the microcavities are field with water. On top of that homogeneous layer the mi-

crostructuring was performed, square lattices of round pillars (diameter 2a = 5µm

; height h = 5µm distance between the pillars 3µm) The corresponding values

of Wenzel’s surface roughness factor r and fractional area of the pillars f are:

r = 2.23, and f = 0.307 (r = Areal/A Areal is true solid surface area following

the topography; A is projected surface area). The Wenzel state is thermody-

namically not favorable for these parameters. The surfaces are hydrophobized by
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Figure 3.1: Electrowetting setup: a voltage U is applied between a droplet and

an electrode covered with a dielectric micro-patterned surface. The contact area

is monitored with an inverted microscope from the bottom through the superhy-

drophobic substrate.

dip-coating in a 0.01% Teflon AF (Dupont) solution. The contact angle on the

flat surface area next to the pillar array of θY ≈ 1150 − 1200.

The macroscopic drop shape was controlled by applying a voltage (here: ac)

between the drop via an immersed metal wire and the ITO electrode. In this

case the metal wire was chosen to be thicker than in previous experiments to

prevent the droplet from detaching during the oscillations. The drop-substrate

interface wass illuminated with monochromatic light (λ = 510nm) from below

and observed in reflection mode using an inverted microscope 3.1.

3.3.2 Observations

The transition from Cassie-Baxter to Wenzel state was achieved in a similar way

as in chapter 1. Here for convenience we used 1kHz ac voltage instead of dc.

To obtain a partial transition to the Wenzel state ∼ 300V was applied (see Fig.

3.2a). Dark dots at the inner side of the three phase contact line indicate that

these pits have been filled with water. After removing the voltage, as expected,

the droplet remains in partial Wenzel state. Afterwards the applied voltage was

set to (∼ 150V ) and the frequency to 64Hz. This voltage is not enough for

Cassie-Baxter to Wenzel transition, thereby at low frequencies the three phase
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contact line oscillations presumably may only empty filled air-pockets, bringing

the droplet to Cassie-Baxter state. Indeed, after low frequency was applied, the

three phase contact line starts to oscillate emptying filled air-pockets. Circles in

Fig. 3.2b and c highlight the area where there are still some air-pockets filled

after 3 and 6s of oscillations respectively. Further oscillations result in complete

transition to the Cassie-Baxter state (see Fig. 3.2 d-f).

Figure 3.2: Snapshots of droplet contact area: (a) in the partial Wenzel state, (b),

(c) the droplet is still in partial Wenzel state (d)-(f) droplet is oscillating around

metal electrode being in mobile Cassie-Baxter state.

3.4 Reversible transitions using patterned elec-

trods

The second approach is to use patterned electrodes under the microstructure.

This allows us to transform the surface only locally into the Wenzel state above

activated patterned electrodes, while other regions of the drop-substrate interface

remain vapor filled, such that the reverse switch only requires the motion of

contact lines but not the nucleation of vapor ”from scratch.”
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3.4.1 Materials and methods

For these experiments, surfaces with 8µm wide parallel rectangular grooves was

used (see Fig. 3.3). The sample preparation process is the same as for previous

experiments, with the difference that in this case we etch away a part of ITO

layer leaving a single stripe (Fig. 3.3 a) or an array of 8µm wide ITO stripes

perpendicular to the direction of the grooves (Fig. 3.3 b). The distance between

ITO stripes was 50µm. In addition, the sample was cleaned using plasma treat-

ment, in order to improve the quality of Teflon coating. In these experiments we

used 1kHz ac voltage. As in all previous experiments, here also we look at the

droplet contact area.

Figure 3.3: Sketch of a sample with patterned electrodes : (a) single-stripe elec-

trode geometry 10µm wide electrode (red stripe) is perpendicular to grooves. (b)

Patterned electrode geometry

3.4.2 Observations

Let us first discuss single stripe electrode configuration. After applying a voltage

between the droplet and the electrode (∼ 400V ), the liquid interface above the

electrodes turns dark, indicating filling of the microchannel (see Fig. ??b). The

fact that only above electrode/channel intersection (and small vicinity around it)

we observe variation of the reflected light suggests that everywhere except the

intersection the liquid interface remains pinned to the top of the channel. The

interface detaches from the top of the channel only above the electrode. When
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the voltage is turned off the droplet returns to the initial Cassie-Baxter state(

Fig. ??a). Thus, with this system we achieve reversible transitions between

the Cassie-Baxter and the Wenzel states. The crucial factor enabling reversible

transitions in such a system is the small hysteresis of the surface. The Laplace

pressure which tends to empty the michrochannel should be able to overcome the

contact line pinning.

Figure 3.4: Snapshots of a droplet contact area for the single stripe electrode

geometry: the electrode (dashed rectangle) is perpendicular to the direction of

grooves. (a) at 400V the droplet is in the partial Wenzel state, (b) after turning

off the voltage it returns to the initial Cassie-Baxter state.

Hence we observed reversible transitions with single stripe electrode, let us

now try the same experiment with an array of electrodes perpendicular to the

direction of the grooves (Fig. 3.3b). In this case, the applied voltage causes

only partial transition from the Cassie-Baxter and Wenzel state, since the elec-

trostatic Maxwell stress mainly acts to the parts of liquid/gas interface above

electrode/channel intersection, bending them downwards. However, as can be

seen from the Fig. 3.5a dark patches appear above not every electrode/channel

intersection, more frequently we see transition on every second intersection.

In order to qualitatively understand this effect let us consider 3 consecutive in-

tersections on the same channel as illustrated in Fig. 3.6. When the intersections

1 and 3 are in Wenzel state, the air pressure inside the channel between these

electrodes increases ∼ 20%, (the volume decreases). This additional pressure is

in the same order of magnitude as the Laplace pressure, which adds up to the

Laplace pressure preventing the transition at the intersection 2.
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Figure 3.5: Snapshots of a droplet contact area: patterned electrodes (vertical

stripes) are perpendicular to the direction of grooves. (a) at 400V the droplet is in

the partial Wenzel state, (b) after turning off the voltage it returns to the initial

Cassie-Baxter state.

Figure 3.6: Sketch of the cross section of the system along the direction of elec-

trodes: the droplet is in the partial Wenzel state on a patterned electrode system.

Described approach for reversible transition between the Cassie-Baxter and

the Wenzel states deserves an attention, since it is easy to implement in microflu-

idic systems. However more research is required to determine the optimal set

of parameters such as width of the electrodes, distance between electrodes, etc.

which will provide better performance of the system. Unfortunately the study of

the these parameters is out of the scope of this work.
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3.5 Conclusions

3.5 Conclusions

In this chapter we present two approaches to achieve electrowetting induced

reversible transitions between Cassie-Baxter and Wenzel states. For both ap-

proaches reversible transition between wetting morphologyes was demonstrated.

The shape oscillations of the droplet under low frequency ac electric field (<

100Hz) are able to switch the droplet from the partial Wenzel to the Cassie-

Baxter state. However, the time required for the transition is rather long (< 10s).

The second approach was the usage of patterned electrodes, which allows to

obtain controlled transition to the partial Wenzel state, leaving air bubbles en-

trapped between electrode/microchannel intersections. In this case the transition

time from the Wenzel to the Cassie-Baxter state is ∼ 5− 10ms.
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Chapter 4

Electric field driven instabilities

on superhydrophobic surfaces

4.1 abstract

In this chapter we study possible mechanisms for the transition from the Cassie

state to the Wenzel state on superhydrophobic surfaces under the influence of

electric fields as a function of the aspect ratio and the wettability of the surface,

both numerically and experimentally. Fully self-consistent calculations of both

electric field distribution and surface profiles show that this instability evolves

from a global one towards a local Taylor cone-like instability for increasing aspect

ratio of the cavities, which were confirmed with our experimental results.1

1Modeling part of this chapter has been published in ”Electric-field-driven instabilities on

superhydrophobic surfaces”, Oh, J. M., Manukyan, G., Ende, D. van den and Mugele, F. [64].,

The experimental part to be published
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4.2 Introduction

When a droplet is placed on a textured hydrophobic surface, air remains between

the droplet and the substrate leading to a composite liquid-solid-air interface

containing a large number of microsopic menisci [50]. The resulting reduction of

the liquid-solid interfacial area is at the origin of the large contact angle and all

other favorable properties of superhydrophobic surfaces, such as reduced frictional

drag and high optical reflectivity. Yet this superhydrophobic Cassie state is not

the only wetting state on textured hydrophobic surfaces. Rather, it competes with

the Wenzel state, in which liquid fills all the cavities on the rough surface. Due

to the particularly high solid-liquid interfacial area in this case, many properties

of the Cassie state turn into their reverse. In order to optimize the stability of

the superhydrophobic state, a substantial amount of work has been devoted to

understanding the physical mechanisms controlling the transition from the Cassie

to the Wenzel state [63, 65, 69, 70, 71, 72, 73].

In chapter 1 we presented a model based on the local balance of electrostatic

forces and the capillary pressure to explain the deformation of the micromenisci

at the drop-substrate interface and their collapse, which initiates the transition

to the Wenzel state at some critical voltage. For the conditions of those exper-

iments, it turned out that the stability limit of the Cassie state was determined

by depinning of the contact line, similar to the pressure-driven collapse of con-

ventional superhydrophobic surfaces [63, 73]. However, these experiments also

demonstrated that the geometry of both the surface texture and the electrodes

has an important impact on the nature and in particular on the reversibility of

the transition.

In this chapter we focus on transition scenarios from the Cassie to the Wenzel

state in a simple generic geometry, namely a single cylindrically symmetric cavity

with a homogeneous electrode at the bottom and a perfectly conductive liquid at

the top (see Fig. 4.1). Using self-consistent numerical calculations we determine

the full equilibrium distribution of the electric field and the corresponding surface

profiles based on the local balance of the Maxwell stress and the Laplace pressure

at the liquid-vapor interface. We validate experimentally the numerical results,

in particular we show experimentally that under influence of an electric field, the
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liquid interface is no longer spherical. We also demonstrate two scenarios for the

Cassie-Wenzel transition under applied electric field.

4.3 The model

We consider a flat electrode at the bottom and a second electrode with a round

hole of radius a at a distance h, as shown in Fig. 4.1. Liquid fills the space

above the top electrode and forms a deformable meniscus in the hole. The three-

phase contact line is pinned along the edge of the hole. For the purpose of our

calculation, the space in between the two electrodes is filled with air.

Figure 4.1: System description: interface deflection in axisymmetric cavity.

In the absence of free charge, the distribution of the electric potential φ is

governed by the Laplace equation within the computational domain Ω.

∇2φ = 0 in Ω. (4.1)

We use boundary conditions of constant potential on the two electrodes and the

the liquid and vanishing radial fields on the symmetry axis and at the outer edge

of the domain for r � a, (see also Fig. 4.1):

φ = U on ∂Ω1 and ∂Ω2, (4.2a)

∂φ

∂r
= 0 on ∂Ω3 and ∂Ω5, (4.2b)

φ = 0 on ∂Ω4. (4.2c)
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In addition, the normal stress condition at the liquid-air interface, which repre-

sents the local balance between the Laplace pressure and the Maxwell stress, is

imposed on the free surface (∂Ω2) to determine the shape of the interface.

γ (∇ · n) = [[n · T e · n]], (4.3)

where [[·]] = (·)out − (·)in, γ is the surface tension of liquid-air interface, n the

unit normal vector on the interface, and T e the Maxwell stress, respectively. The

Maxwell stress is defined by T e = εε0
[
EE − 1

2
E2

nI
]
, where ε is the dielectric

constant, E the electric field, and En the absolute value of E, respectively. The

curvature (κ) of the surface is given by the divergence of the normal vector.

κ = ∇ · n (4.4)

Eq. (4.1)-(4.3) define a free boundary problem, which we numerically im-

plement using the commercial software package COMSOL Multiphysics. The

Moving Mesh application in COMSOL is applied to capture the free boundary

(for more details of the model see [64]).

4.4 Materials and methods

The experimental setup consists of a flat ITO-covered glass plate coated with

5µm SU-8 covered electrode at the bottom, and 130µm thick microscope slide

with a round hole of radius a (2a = 1.2mm) at the top (see Fig. 4.2a). The

distance between plates h (aspect ratio H = h/a) is the main parameter in

our experiments. Water fills the space above the microscope slide and forms a

deformable meniscus in the hole. White dashed lines in Figs. 4.2b and c indicate

the lower surface of the top plate. Our area of interest lies below the dashed line.

Naturally, the sessile drop at the hole forms a meniscus with a finite radius of

curvature due to Laplace pressure (see Fig. 4.2b). The black segment below the

dashed line in the Fig. 4.2b is the cross-section of the water meniscus (the segment

above the dashed line is the reflection of it on the top plate). To eliminate the

initial curvature of the meniscus, the drop was connected to a hydrostatic head,

in which the liquid level was adjusted to provide a well defined pressure equal to
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Figure 4.2: (a) Experimental setup: Drop of water, which is connected to water

reservoir, is placed on a microscope slide containing a round hole. (b) Snapshot of

a sessile drop on a hole (c) Snapshot of a drop connected to a hydrostatic head.

ambient pressure. As a result we obtain a flat initial meniscus. The black dashed

line in Fig. 4.2c indicates the lower ”edge” of the hole with a flat meniscus.

An electric field was applied between the drop and the bottom electrode and

snapshots of a side-view of the liquid interface were taken upon increase of applied

voltage (camera placed parallel to the electrodes). Fig. 4.3 shows typical side-

view images of the liquid interface under influence of electric field. From these

images the maximal deflection ζ of the meniscus as well as exact profiles of the

liquid interface were extracted for series distances between plates H and applied

voltages V .

4.5 Results and discussion

As discussed in chapter 1, the stability of the liquid interface under applied electric

field is governed by local balance between electrostatic Maxwell stress, pulling

outwards along the surface normal, and Laplace pressure of the curved interface.

This equilibrium holds for voltages smaller than some critical value (V < Vc),

after which the Laplace pressure cannot balance the Maxwell stress anymore and

the system becomes unstable.
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Figure 4.3: Side-view images of water meniscus at different values of applied

electric field (H = 0, 64)

Let us first discuss the behavior of the liquid interface for voltages below

the critical value focusing on the shape of the interface. Fig. 4.3 shows series

of side-view images of the liquid interface under influence of electric field (the

voltage increases from left to right). Upon increasing the voltage the bending

increases gradually up to a critical maximum value Vc after which the system

becomes unstable. For voltages closer to Vc one can notice that the liquid in-

terface is rather conical than spherical, (see Fig. 4.3f). This is due to the fact

that the distribution of the electric force is not homogenous along the liquid-gas

interface, which leads to non-spherical deformation of the interface. Equilibrium

surface profiles obtained by calculating the electric field distribution and the sur-

face profile by solving Eqs. (4.1)-(4.3) also confirm nonspherical nature of liquid

interfaces [64]. To characterize the shapes of the liquid interfaces under electric

field we compare the experimentally observed liquid interfaces to ones obtained

from numerical simulations (Fig. 4.5). The dashed lines in the figure correspond

to numerical results, whereas full colored lines to experimental data. There is no

fitting parameter introduced to match numerical and experimental results. The

voltage difference between corresponding numerical results and the experiment

does not exceed ±10V , which is below the limit of experimental error. The com-

parison proves consistency of the model, and provides an experimental evidence

of non-spherical deformation of a liquid interface under applied electric field.

We can also determine the maximal deflection of the liquid interface as a
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Figure 4.4: Snapshots of oscillating meniscus: the frames are taken 50ms after

each other.

function of applied voltage. Fig. 4.6 presents comparison of experimentally and

numerically obtained deflection of the liquid interface for various values of aspect

ratio H. Here dashed lines correspond to numerical results, symbols to the ex-

perimental data. The error bar represents averaging of maximal deflection for a

given voltage in 3 runs of the experiment.

Let us now discuss the the situation when the applied votage exceeds the

critical value. When V > Vc, the Laplace pressure cannot balance the Maxwell

stress anymore, and thus, the system becomes unstable. For different values of

H the instability of the liquid interface manifests itself in a different manner:

For H < Hc (Hc ≈ 0, 4) increasing of applied voltage beyond Vc leads to the

meniscus touching the bottom of the cavity. After removing the applied voltage,

the liquid interface remains pinned to bottom electrode due to large hysteresis,

which apparently, the Laplace pressure is not able to overcome. This scenario

displays similarities with the ‘sagging’ scenario for the pressure-driven transition

on conventional superhydrophobic surfaces [63, 71]. Yet, the sudden jump from

a substantial finite distance is a characteristic of the electrically driven interface
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Figure 4.5: Liquid surface profiles obtained from numerical simulation and ex-

periment. Dashed lines correspond to numerical results, solid lines experimental

data for 1400, 1500 1600 and 1700V (H = 0, 83)

instability. For conventional superhydrophobic surfaces such jumps should also

exist, but only on the length scale of the scale of the van der Waals (or some

other molecular) attraction, i.e. on the scale of a few nanometers.

The situation is different for H > Hc. When the applied voltage reaches the

critical value Vc the sharp tip of the meniscus starts to oscillate, at the top of

each oscillation ejecting a narrow jet of presumably charged microdroplets. Fig.

4.4 shows a typical snapshots of an unstable meniscus. The frequency of the

oscillation depends on applyed voltage: more we increase the voltage beyond Vc

faster the meniscus oscillates. This phenomenon reminds a classical Taylor cone

instability and electrospraying [74, 75]. The half opening angle of the cone at

the jet formation in our experiments was ≈ 47 − 500 (Taylor observed in his

experiments a half opening angle of 49, 30).

For H >> 1, the distribution of the electric field in the vicinity of the meniscus

is no longer affected by the presence of the counter electrode at the bottom. This

50



4.5 Results and discussion

Figure 4.6: Deflection of the meniscus vs applied voltage for various distance

between plates. Dashed lines: numerical model, symbols: experimental data.

corresponds to a situation where a liquid interface is exposed to an external

field E0 = V/h at large distance. With the Maxwell stress scaling as (V/h)2

and the Laplace pressure scaling as γ/a, we find that the stability limit should

be determined by a critical electrocapillary number scaling as aV 2/h2 ∝ HΛ2
c .

Here Λ = (a/h)
√
εε0V 2/2γh describes the relative strength of electrostatic forces

with respect to the Laplace pressure and γ is the surface tension of the liquid.

Hence, we expect HΛ2
c to approach a constant value of order unity as the system

approaches the Taylor cone regime. Moreover, as it can be seen in Fig. 4.6 the

critical deflection of the meniscus also saturates for large numbers of H. The

maximal deflection of the meniscus before the instability does not exceed the

value ζc = 240µm.

In Fig. 4.7 we plot HΛ2
c and the critical deflection as a function of aspect ratio

H. Here for convenience we normalize the deflection by the radius of the hole,

plotting Hξc = ζc/a. Dashed lines in the figure represent the numerical results.

The experimental results for normalized critical deflection are in good agreement
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Figure 4.7: Dependence of HΛ2
c and Hξc on aspect ratio full symbols: experi-

mental data, empty symbols: model result.

with the numerical prediction whereas for the critical electrocapillary number we

obtain smaller values than the model predictions. We attribute these deviations

to the fact, that for voltages close to the critical value small variations in voltage

result in large variations of the deflection (see Fig. 4.6), thus experimentally

obtained values for critical voltage are smaller than the real Vc.

4.6 Conclusion

Our numerical and experimental study demonstrates that electrohydrodynamic

instabilities are an important limiting factor for the stability of the Cassie state

on superhydrophobic surfaces exposed to electric fields. Electrohydrodynamic

instabilities compete with the classical transition criterion due to contact line de-

pinning from the edges of the surface topography, which dominates for small con-

tact angles. For depth-to-width aspect ratios of the surface topography exceeding
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H = 2, the critical Taylor cone-like shape of the surface becomes independent

of the aspect ratio. This implies a constant critical contact angle delineating

depinning and electrohydrodynamic instabilities. For superhydrophobic surfaces

involving geometric overhangs that suppress contact line depinning, electrohy-

drodynamic instabilities are likely to be the dominant instability mechanism.

We also demonstrate the nonspherical nature of the liquid-gas interface under

an applied electric field. The reason for that is a nonhomogenous distribution

of the electric forces along the liquid interface. This leads to non-spherical de-

formation of the interface (see Fig. 4.3), contrary to a pressure driven collapse

on conventional superhydrophobic surfaces [63, 73], in which the shape of liquid

interface is governed by only Laplace pressure.
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Chapter 5

(Electro)-wetting of a drop on a

sphere

In this chapter, the equilibrium morphology of a drop on a sphere is analyzed as a

function of contact angle and drop volume experimentally and with analytic effec-

tive interfacial energy calculations. Experimentally, a drop on a sphere geometry

is realized in an oil bath by placing a water drop on a sphere coated with a dielec-

tric, The radii of curvature of the sphere are comparable with that of the drop.

Electrowetting (EW) is used to change the contact angle of the water drop on the

sphere. To validate the applicability of EW and the Lippman-Young equation on

non-flat surfaces, we systematically investigated the response of the contact angle

to the applied voltage (EW response) for various drop volumes and compared the

results with the case of a planar surface. The effective interfacial energy of two

competing morphologies, namely the spherically symmetric ”completely engulfing”

and the ”partially engulfing” morphology are calculated analytically. The analytic

calculations are then compared to the experimental results to confirm which mor-

phology is energetically more favored for a given contact angle and drop volume.

Our findings indicate that the ”partially engulfing” morphology is always energet-

ically more favorable. 1

1Part of this chapter has been published in ”Wetting of a Drop on a Sphere”, Eral, H. B.

Manukyan, G. and Oh, J. M [76]. Gor Manukyan and Burak Eral have equal contribution on

the paper.
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5.1 Introduction

Drops on curved surfaces are omnipresent in nature: dew drops on a spider web

or a rain drop on a fruit provides the most intriguing display of drop morphologies

on curved surfaces (Fig.5.1). The morphologies that a drop assumes on a curved

surface are dictated by wettability of the substrate, which is a key parameter for

addressing fundamental problems of fluid stability on complex geometries [77, 78].

The wettability of a substrate depends on the interplay between the contact angle

and the geometry of the surface. For instance, a drop that partially wets a planar

surface can engulf a fiber with same wettability.

The drop on a sphere geometry is not only a classic wetting geometry but also

it is often encountered in industrial and fabrication processes. Such processes

can benefit from the fundamental understanding of the wettability for the drop

on a sphere geometry. Recently, this classic wetting geometry was evoked to

synthesize complex colloidal particles by growing a colloidal particle inside a

polymer drop [79]. The colloidal particle that is initially in ”completely engulfing”

morphology later assumes a ”partially engulfing morphology” dictated by the

wettability. Wettability of the polymer drop on the particle is controlled by the

reaction parameters such as monomer concentration and temperature [79, 80].

Various applications in colloidal science [81], microfluidics [82, 83, 84, 85, 86],

detergency [87], optofluidic lenses [88], electronic displays utilize spherical and

other non-flat geometries [89, 90].

A drop on a sphere can have two topologically distinct morphologies: the ”par-

tially engulfing” morphology and the spherically symmetric ”completely engulf-

ing” morphology. These two morphologies are fundamentally different in terms

of their symmetry and response to external driving such as shear or mechani-

cal agitation. The wettability of a droplet on a spherical surface is addressed

in various theoretical studies, [91, 92, 93, 94] yet an experimental setup that al-

lows precise control over parameters that determine the wettability hence the

equilibrium morphologies was missing. Previous experimental studies on spheri-

cal surfaces [95, 96] utilized different materials to vary the contact angle. These

methods do not offer the required resolution to explore the range of contact angles

defining the morphologies.
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For experimental realization of the drop on a sphere geometry, a water drop in

an oil bath is placed on a metal sphere coated with a dielectric layer. The wetta-

bility of the drop on the sphere is tuned by electrowetting (EW). Electrowetting is

an efficient way of controlling the wettability of liquids on surfaces. The effective

interfacial tension, or equivalently the apparent contact angle θ of a conducting

drop on a dielectric substrate is controlled by applying a potential difference (U)

between the conducting liquid and an electrode integrated under the dielectric

layer [40]. The difference between the cosine of the apparent contact angle θ

and the cosine of the microscopic contact angle θY at the three-phase contact

line (TCL) is proportional to the square of the applied potential (U2) by the

Lippmann-Young equation (Eq. 5.1).

cos θ = cos θY + η, η ≡ ε0εrU
2

2δγ
, (5.1)

where θY is the Young’s angle and the electrowetting number η is defined by the

vacuum permittivity ε0, the dielectric constant εr, the dielectric layer thickness

δ, and the interfacial tension γ between liquid and solid phases.

First, we confirm the applicability of the Lippmann-Young equation and EW

to study the equilibrium morphology of drops on curved surfaces. For this pur-

pose, the response of the contact angle to the applied voltage (EW response) for

a drop on a spherical, a cylindrical and a planar substrate is compared. Fur-

thermore, we investigate the EW response on curved surfaces systematically as

a function of the drop volume. The volume of the drop is varied to change the

relative surface curvature (κ1/κ2), where κ1 and κ2 are the curvatures of drop

and surface, respectively.

The validation of the Lippmann-Young equation for non-flat surfaces is re-

quired as the intrinsic curvature of the geometry and dielectric layer thickness

influence the electric force distribution in the vicinity of the contact line. In the

derivation of Eq. 5.1, the force distribution is obtained assuming that the sup-

porting substrate is flat. For a non-flat surface, the electrical force distribution

is altered due to the surface curvature and, as a consequence, the wettability

change may deviate from the Lippmann-Young relation. Furthermore, this varia-

tion might depend on the relative surface curvature and dielectric layer thickness.
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5. (ELECTRO)-WETTING OF A DROP ON A SPHERE

It has been shown that the electrostatic force in the presence of electrowetting

is concentrated near the contact line in a region in the order of the dielectric

thickness [62, 97]. From this point, one can hypothesize that the curvature of

the sphere will not be dramatically influencing the EW response due to large dif-

ference in dimensions considered. We provide experimental confirmation of this

hypothesis stating the curvature effects can be ignored in this study.

(a)

Oil

Sphere

Dielectric
Layer ( )?

(b)

Water
drop

Sphere

k TPS

k TPD

A B

(c)

p-q

Figure 5.1: Panel (a) shows the experimental setup . The setup consists of a

non-flat steel substrate coated with a dielectric layer of thickness (δ) and a water

drop placed on the top, immersed in oil. The metal sphere is grounded and the

water drop is connected to a power supply in our setup. Panel (b) shows images

of the experimental system where the voltage is changed from 0 to 300 V. Panel

(c) presents ”partially engulfing” morphology from nature, a water drop sitting on

a berry courtesy of S.Dreilinger. Note that in nature gravity is ever present as

opposed to experiments presented here and it induces additional asymmetry.(the

gravity in the experiments is negligible due to very little difference in densities

between water and silicone oil)

Secondly, we determine the equilibrium shapes of a drop on a sphere geome-

try experimentally and analytically relying on the aforementioned confirmation.

The parameter space consisting of contact angle and drop volume is scanned to

find the stable morphologies with the experimental setup shown in Fig. 5.1.

The effective interfacial energy of the equilibrium morphologies are extracted ex-
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perimentally by image processing and compared to analytical effective interfacial

energy calculations. We believe that our systematic investigation will address

fundamental wetting questions [17, 98, 99] where manipulation of contact angle

plays an important role for complex geometries [100, 101] .

5.2 Materials and methods

5.2.1 Electrowetting setup

Our buoyancy-neutral experimental setup consists of a stainless steel sphere (r

= 1.5 mm) coated with a dielectric layer of thickness δ (spatial variation of δ

is between 2 to 4 µm with mean of 3.1 µm) immersed in silicon oil (Fluka AS4

with density ρ = 1.01 g/cm3 and viscosity µ = 6 mPa·s). The experiment is

performed in oil to avoid evaporation and to reduce the contact angle hysteresis

as well as to prevent the buoyancy effect. The relative importance of gravity over

interfacial tension is measured by the Bond number Bo = ∆ρgL2/γ where ∆ρ is

the density difference between oil and water phases, L is the characteristic length

given by the radius of the drop with maximum drop volume (8 µl). In our density

matched experimental setup Bo ≈ 10−2, so the gravity effects can be ignored.

A function generator (HP33250A) and an amplifier (Trek PZD350) are used to

supply the required voltage. A video goniometer (OCA Dataphysics) is used to

capture images. We place a water drop on top of the spherical substrates. The

volume of the drop is controlled by an automated syringe pump whose needle

also acts as an electrode (Fig.5.1). In these experiments, the volume of the drop

(Vdrop) are varied from 8 to 1 µl.

5.2.2 Substrate preparation

Non-flat substrates are prepared with a cleaning procedure followed by two con-

secutive dip coating steps. In the first step, the steel spheres are cleaned with

ethanol in an ultrasonic bath for 15 minutes and left to dry in a fume hood un-

der ambient conditions. Secondly, the substrates are dip coated with SU-8, then

the SU-8 coated substrates are placed on a hot plate for 3 minutes and finally
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the substrates are UV cured for 30 seconds. In the last step, the SU8 coated

spheres are dip coated again with 0.6 wt.% Teflon AF solution. The thickness

of the dielectric layer is measured from scratched samples by the Scanning Elec-

tron Microscopy (SEM) after the experiments. The SEM images are given in the

Supplementary Information.

5.2.3 Image processing

5.2.3.1 Contact angle measurements

The images of the drop on spherical substrates are captured with a CCD camera

for different voltages. To measure the (apparent) contact angle θ on non-flat

geometries (Fig.5.1b), a simple thresholding algorithm is used to locate the oil-

water-sphere contact line. To measure the contact angle θ, two tangent vectors

originating from the three-phase contact line (TCL) are needed, one tangential to

the drop-oil interface: k̃TPD and the other tangential to the spherical substrate-oil

interface: k̃TPS. Two vectors (k̃TPD, k̃TPS) are defined by the least square fitting

method in the vicinity of the TCL ( Fig.5.1b). The angle π-θ between these two

vectors gives us θ. The procedure was repeated for the both sides of the TCL

(A and B in Fig.5.1b) and the averaged contact angle is given in this study.

The error bound of contact angle measurements is calculated as 3◦ by varying

parameters of the detection algorithm systematically.

5.2.3.2 Effective interfacial energy calculations from experimental data

The effective interfacial energies of the two morphologies are calculated by ex-

tracting the surface areas of each interface from the digital images indicated in

Fig.5.2. For the ”partially engulfing” morphology of three phases in contact: the

oil-water drop interface area (S1), the drop-substrate contact area (S2), and the

oil-substrate contact area (S3) are considered. For the “completely engulfing”

morphology, the sphere is not in contact with the surrounding oil medium so

only oil-water drop interface and water-solid contact areas are considered.

Calculation of the effective interfacial energy for the ”completely engulfing”

morphology (E1) requires the determination of water drop-solid sphere and water

drop-oil contact areas. As these contact areas are not contact angle dependent,
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provided that the drop volume and the radius of the sphere are known, E1 can

be calculated by multiplying the surface tension of the interfaces with respective

contact areas.

For the ”partially engulfing” morphology, contact areas S1, S2 and S3 vary

with the contact angle θ. E2 varies with respect to θ The parameters that vary

with respect to θ are θ1, θ2 and R as shown in Eq.5.2. Provided that with the

radius of the solid sphere (a) and the drop volume are known, the parameters

θ1, θ2 and R are calculated by simple geometric relationship once the three-phase

contact line (TCL) and the centers of liquid drop CMdrop and sphere CMsphere are

known. More specifically, the images allow us to find the CMdrop and CMsphere

precisely by fitting a circle to the contour of the the drop and the sphere. The

θ dependent θ1, θ2 can be calculated from the inner product of two vectors. The

inner product of vector connecting CMdrop to CMsphere and vector connecting

CMdrop to TCL gives θ2. The inner product of the vector connecting CMdrop to

CMsphere with the vector connecting CMsphere to TCL gives θ1. These parameters

allow for calculation of contact areas S1, S2, S3 from Eq.5.3 - 5.5. Once the

contact areas and the respective interfacial tension values are known, the effective

interfacial energy for the ”partially engulfing” geometry (E2) is calculated.

The effective interfacial energies of two morphologies (E1, E2) as a function

of θ are later used in Eq.5.9 to calculate the effective interfacial energy difference

between the two morphologies. Assuming that the spherical symmetry approxi-

mation holds, i.e. the drop shape is not disturbed by the wire and gravity.

5.2.4 Analytical effective interfacial energy calculations

The effective interfacial energies of the two morphologies seen in Fig.5.2 are

analytically calculated as a function of the drop volume and the contact angle.

For this purpose, the radius of drop R in the ”partially engulfing” morphology

can be expressed in terms of a, θ1, θ2 with the spherical shape assumption.

R =
sin θ1
sin θ2

a, (5.2)

61



5. (ELECTRO)-WETTING OF A DROP ON A SPHERE

Figure 5.2: Panel (a) shows the ”partially engulfing” morphology and (b) the

”completely engulfing” geometry. The parameters indicated in the effective inter-

facial energy calculations are indicated in both panels.

here θ2 = θ + θ1, where θ is the contact angle and a is the radius of spherical

substrate. The surface area of the drop (S1), the drop-substrate contact area

(S2), and the air-substrate contact area (S3) can be expressed as follows:

S1 = 2πR2 (1− cos θ2) , (5.3)

S2 = 2πa2 (1− cos θ1) , (5.4)

S3 = 2πa2 (1 + cos θ1) . (5.5)

The surface area of the drop (S4) in contact with oil is given in “completely

engulfing” morphology as

S4 = 4πb2, (5.6)

where b is the radius of the drop in the “completely engulfing” morphology

b =

(
a3 +

V

4π/3

)1/3

. (5.7)
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The difference ∆E = E1 − E2 between the effective interfacial energy of the

completely engulfed morphology (E1) and the partially engulfed morphology (E2)

is given in Eq.5.8.

∆E = E1 − E2 =
(
S4γ + (4πa2)γws

)
− (S1γ + S2γws + S3γso) (5.8)

where γ, γws andγso denote the interfacial tension between water-oil, water-solid

and solid-oil phases, respectively. The total effective interfacial energy difference

can be rearranged as follows:

∆E

γ
= (S1 − S4) + S3 cos θ. (5.9)

When ∆E > 0, the partially engulfing morphology is energetically favorable

compared to the completely engulfing morphology.

5.3 Results and disscusion

To confirm the applicability of the Lippmann-Young equation for non-flat sur-

faces, we focus on three parameters: (a) substrate geometry (b) drop volume

and (c) voltage. The responses of the contact angle with respect to the applied

voltage for different substrate geometries and drop volumes are shown in Fig.5.3.

The influence of substrate geometry on EW response is examined for a drop of

8µl volume placed on spherical, cylindrical and planar surfaces. Fig.5.3 demon-

strates how the contact angle changes as a function of the applied voltage and

compares the EW response for aforementioned substrate geometries. The cosine

of the contact angle (cos θ) is plotted as a function of the non-dimensionalized

EW number to account for variations in δ in Fig.5.3. The δ is extracted from

SEM images. The curves follow the Lippmann-Young equation in the Lippmann-

Young regime followed by the saturation regime where the contact angle does not

vary with applied voltage [40].

All the curves in Fig.5.3 collapse onto the Lippman-Young equation prior

to saturation regime, implying that the influence of geometry on EW response

is negligible as previously hypothesized. The contact angle (cos θ) is plotted

against square of the applied voltage for different drop volumes in the inset of
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Figure 5.3: Influence of the substrate geometry and the drop volume on the

response of contact angle to an applied voltage (EW response). In the main figure,

the cosine of the contact angle (cos θ) is plotted as a function of EW number (η)

for different geometries with a given drop volume (V=8 µl). The symbols indicate

substrate geometry: cylindrical (triangle), spherical (sphere) and flat (square). The

dashed line denotes the Lippmann-Young Equation. In the inset, cos θ is plotted as

a function of square of U2 for different drop volumes placed on a spherical geometry.

The symbol fill patterns denote different drop volumes Vdrop: (whole 8 µl, empty

4 µl and crossed 1 µl), respectively.

Fig.5.3. The collapse of data for different drop volumes (denoted by symbol fill

patterns in Fig.5.3) in the Lippmann-Young regime points out that the drop

volume hence relative curvature has no influence on the response of contact angle

to the applied voltage for spherical substrates (in the studied range). We have

also looked at the influence of drop conductivity on EW response for spherical

substrates. Dependence of EW response on drop conductivity is found to follow

similar behavior as for planar surface[42, 102, 103]. In Fig. 5.3 and its inset, a

slight scattering and deviation from the Lippmann-Young equation is observed.

This is attributed to a spatial variation in the dielectric layer thickness of samples

used in experiments which we have identified to vary between 2-5 microns.

After validating the applicability of the Lippmann-Young equation and the
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reliability of EW on spherical substrates, we investigate the equilibrium morpholo-

gies by comparing the effective interfacial energies of the partially engulfing and

the completely engulfing morphologies in Fig.5.2. To assess which morphology

is more favorable, we calculate the effective interfacial energy difference between

these two morphologies (Eq.5.8). When ∆E ≥ 0, the completely engulfing mor-

phology is the energetically favorable and ∆E < 0 the partially engulfing is the

favorable.

Evaluation of the drop morphology as a function of contact angle is monitored

by plotting the projected distance d(θ) between the center of mass CMsphere of the

solid sphere and the center of mass of the drop CMdroplet at a given contact angle

in Fig. 5.4a from experimental images (Fig.5.4c). With decreasing contact angle,

d(θ) gradually decreases and the drop partially engulfs more of the sphere for all

drop volumes. To characterize equilibrium shapes for different drop volumes, we

defined a symmetry parameter, λ, which denotes the relative distance d(θ) at a

given contact angle normalized by the same distance at the Young’s angle d(θY )

in Eq.5.10. For a given contact angle, λ is determined from experimental images

as follows: CMdrop and CMsphere are determined by identifying the contour of

the drop-sphere via track holding and fitting a circle above and below TCL. The

distance between CMdrop and CMsphere determines d(θ) for a given contact angle.

The ratio of this distance at a given contact angle to this distance at Young angle:

d(θY ) gives the symmetry parameter (Eq.5.10). The inset schematic in Fig.5.4b

demonstrates the symmetry parameter.

λ =
d(θ)

d(θY )
(5.10)

For λ ∼= 0 the drop is in ”completely engulfing” morphology for λ = 1 the drop

is in its equilibrium morphology without any applied voltage. Fig. 5.4b demon-

strates the variation of λ as a function of contact angle (θ) for aforementioned

drop volumes. The curves of different drop volumes collapse onto a single curve

and none of the curves reaches λ ' 0 hence the ”partially engulfing” morphology

is always the preferred morphology for this θ range.

The effective interfacial energy difference (∆E) is calculated analytically and

from experimental data as described in detail in the Methods section. Fig.5.5

65



5. (ELECTRO)-WETTING OF A DROP ON A SPHERE

Figure 5.4: Evolution of the drop morphology as a function of drop volume Vdrop

and contact angle θ. Panel (a) provides the distance between the center of mass of

drop and the sphere (d(θ)) as a function of θ for different drop volumes. Panel (b)

gives the symmetry parameter (λ) vs. θ . Different symbols correspond to drop

volumes (1 µl (©), 4 µl (4), 8 µl (�) respectively). The symmetry parameter (λ)

is defined as the distance d(θ) between the center of mass of the sphere and the

drop at a given θ normalized byd(θY ): the distance when θ is equal to θY . Inset

in panel (b) demonstrates the d(θ) and symmetry parameter. Panel (c) provides

an overview of the experimental images for various θ.

shows the effective interfacial energy difference normalized by 4πa2γ as a func-

tion of the contact angle for different drop volumes. The solid lines denote the

analytical effective interfacial energy calculations whereas the discrete points in-

dicate the effective interfacial energies calculated from the experimental data.

For all the effective interfacial energy calculations considered here, the effec-

tive interfacial energy difference indicates that the favorable morphology is the

”partially engulfing” morphology irrespective of the drop volume and the con-

tact angle. These results are in agreement with the effective interfacial energy

analysis given in Fig.5.4. Only when the contact angles approach to zero, the

energy difference also converges to zero. This means that the surface energy of
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the wetted area is the same with that of non-wetted area (γ+ γsw = γso). Due to

contact angle saturation phenomena, very low contact angles cannot be reached

experimentally. Yet, the analytical effective interfacial energy calculations show

that the two morphologies have equal effective interfacial energies indicating that

the two morphologies are equally favorable for zero contact angle. It implies that

with large enough drops and zero contact angle a transition from one morphology

to the other is theoretically possible.

V

Figure 5.5: Normalized effective interfacial energy is plotted as a function of

contact angle for different drop volumes used in experiment. Continuous lines

indicate the theoretical and the discrete points of same color indicate experimental

effective interfacial energies extracted from image processing. Different symbols

correspond to drop volumes (1 µl (4), 4 µl (©), 8 µl (�) respectively.

In this study, the upper and lower bounds of drop volume considered are de-

fined by the limitations of the experimental setup and the associated physics.

The smallest volume utilized is bound by the size of wire in conventional EW

setup (The drop diameter has to be a lot bigger than the wire). The upper limit

is bound by the capillary limit. Provided that we are not limited by the exper-

imental parameters these two extreme limits may provide interesting insights.

For the generality of our results, it is relevant to discuss these extreme cases:

( (i) Vdrop >> Vsphere and (ii) Vdrop << Vsphere). In case (i), from the effective

interfacial energy calculations, we can deduce that the larger the ratio of Vdrop to
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Vsphere the smaller the difference ∆E. This points out that the effective interfa-

cial energy of two states become comparable at all contact angles. Less energy is

required to jump from one morphology to the other upon application of flow or

mechanic agitation. For case (ii), the transition becomes rather difficult and the

systems resembles a flat geometry.

The major source of error in the calculation of the effective interfacial energy

from experiments is the determination of the contact angle. The measurement

error is within 3◦. As the experimental and theoretical values collapse for all

the drop volumes, effects that deform the drop such as contact angle hysteresis,

gravity and wire are not significant.

Utilizing EW to study fundamental wetting problems in complex geometries

provides unmatched control over the contact angle. Yet the limitations in EW

should not be neglected. The contact angle saturation does not allow reaching

contact angles smaller that 35◦. This limitation can be avoided by evoking inverse

EW scheme where a oil drop is immersed in water yet it has to be identified as

a limitation of the method [104]. Conventional and inverse EW schemes can be

used in parallel to reach larger contact angle ranges. Special care has to be taken

for the conventional EW setup we utilized, as the wire has to be much smaller

than the drop to minimize its effect on the symmetry of the system. Interdigitated

electrode or inverse EW setups can be evoked to bypass this effect. In our study,

we monitored the symmetry of the drop and manually interfered by moving the

wire when the symmetry is compromised.

Our results clarify the wetting behavior of a liquid drop on a spherical sur-

face. Comparing this behavior to the wettability of a liquid drop on a infinitely

long cylindrical fiber points to some interesting differences. Fibers can be fully

engulfed with a nonzero contact angle where the contact angle has to be infinites-

imally small for a drop on a sphere for complete engulfment [87, 104, 105]. The

critical contact angle, at which a drop engulfs a fiber, depends on the drop volume

whereas for the drop on a sphere geometry such critical contact angle is not drop

volume dependent.
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5.4 Conclusions

In the present chapter, we first validated EW as a tool to study wetting prob-

lems of non-flat geometries. Later on, relying of this validity, we confirmed the

equilibrium morphologies of a classic wetting geometry: drop on a sphere as a

function of governing variables drop volume and contact angle, experimentally

and analytically.

For validation purposes, the influence of substrate geometry on the EW re-

sponse is studied systematically considering the effect of drop volume hence rela-

tive curvature. For different drop volumes corresponding to different relative drop

to substrate curvatures, the EW response stayed the same, indicating that in the

experimental parameter regime covered, curvature effects can be ignored. Com-

paring the response of contact angle to the EW number (η) for flat, cylindrical

and spherical geometries, we conclude that substrate geometry has no influence

on the EW response. Our results indicate that the Lippmann-Young equation

holds for spherical substrates as for flat substrates within the experimental pa-

rameters examined. Furthermore, we hypothesize that the effect of substrate

curvature can be ignored for cases where the dielectric layer thickness is much

smaller than the characteristic dimension of the geometry such as the radius of

curvature of surface (δ � κ2).

Relying on applicability of EW on non-flat surfaces, the equilibrium morpholo-

gies of two competing geometries is studied by calculating the effective interfacial

energy of both morphologies analytically and experimentally. Our results show

than the ”partially engulfing” morphology is the energetically more favorable and

the mechanically stable morphology as the absolute effective interfacial energy of

the engulfing morphology is greater that the ”partially engulfing” morphology

under all conditions. Only for vanishing contact angles, the effective interfacial

energy of the ”completely engulfing” morphology is comparable to the ”partially

engulfing” morphology. It is noteworthy to mention that application of EW to

wetting problems in complex geometries opens alleys to explore industrially rel-

evant problems such as mechanical stability of liquid bridges between non-flat

geometries such as spheres or fibers.
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Chapter 6

Direct observation of non

equilibrium electroosmotic

instability

6.1 Abstract

In this chapter we present the first direct experimental visualization of a the-

oretically predicted hydrodynamic instability of ionic conduction from a binary

electrolyte into a charge selective solid. This instability develops above a critical

voltage applied to a thin rectangular transparent concentration polarization cell

containing a copper sulfate solution flanked by a copper anode and a cation selec-

tive membrane. At steady state, upon the passage a DC current, current/voltage

dependence exhibits a characteristic saturation at the limiting current. Upon a

further increase of voltage, current increases marking the transition to the over-

limiting conductance regime. We show that this transition is mediated by the

appearance of a vortical flow that increases with the applied voltage in the over-

limiting regime.1

1Part of this chapter has been published in ”Direct Observation of a Nonequilibrium Electro-

Osmotic Instability”, S. M. Rubinstein, G. Manukyan, A. Staicu, I. Rubinstein, B. Zaltzman,

R. G. H. Lammertink, F. Mugele, and M. Wessling [106].
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6.2 Introduction

Microscale fluid flows commonly arise when a DC current passes through the

diffusion layers of binary ionic solutions close to charge selective solids, such as

electrodes [107], ion exchange granules [108, 109, 110] or membranes [111, 112],

and arrays of nanochannels [113]. Under conditions of extreme diffusion limita-

tion (concentration polarization (CP) near the limiting current [45]), these flows

provide an additional ionic transport mechanism. This mechanism is essential for

the operation of nanofluidic preconcentrators [111, 112] and overlimiting electro-

dialysis [114, 115, 116]. On short length scales, in the absence of free interfaces,

these flows are not driven by gravity or surface tension but rather by the electric

force acting upon the space charge of the nanometers thick interfacial electric

double layer (EDL). Slip-like fluid flow induced by this force is known as elec-

troosmosis (EO).

There are two regimes of EO, corresponding to different states of the EDL

and controlled by the nonequilibrium voltage drop (overvoltage) across it [46,

117]. The two are quasiequilibrium [118, 119, 120, 121], and nonequilibrium

[46, 108, 109, 110, 117, 122, 123] EO. While both result from the action of a

tangential electric field upon the space charge of EDL, the first relates to the

charge of quasiequilibrium EDL, whereas the second to the extended space charge

of nonequilibrium EDL. The nonequilibrium EDL develops in the course of CP

near the limiting current.

According to a recent theory [46, 117], a novel critical instability of quiescent

ionic conduction related to the extended charge EO stands behind the overlimiting

conductance through a planar ion exchange membrane. In the course of 1D

conduction through a planar layer an electrolyte concentration gradient forms.

Its related electric force does not impair mechanical equilibrium in the system

that remains stable as long as EDL retains its quasiequilibrium structure. With

the increase of voltage, the system moves away from quasiequilibrium and an

extended space charge develops in the EDL. EO slip related to this extended space

charge renders the quiescent conduction unstable [46, 117, 124]. This instability

of 1D ionic conduction is reminiscent of instabilities in 1D thermal conduction,

such as the Rayleigh–Benard and Marangoni instabilities. While reports of the
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underlying extended space charge EO [108, 109, 110] and, possibly its related

flow patterns [107] might have been numerous, to the best of our knowledge,

no experimental evidence of this instability existed. Here we report on a direct

observation of such instability.

6.3 Materials and methods

Experiments are conducted with a transparent PMMA version of the ’quiet’

horizontal cell (Fig. 6.1), previously employed for CP studies [114, 115, 124]

. The cell is sealed at the bottom by a massive polished copper anode, while a

cation-exchange membrane (CEM: Neosepta CMX, Tokuyama Soda Ltd., thick-

ness d = 170µm) seals its top. A0.01 normal degassed copper sulfate solution is

used as the working electrolyte. The cross section of the anode, membrane and

cell is 2 × 2mm, while the cell height is 0.5mm. Above the membrane, a large

cathode compartment is sealed by a massive copper cathode. The cathode sur-

face area is much larger than that of the anode and membrane. This guarantees

that all CP is localized at the membrane [124].

To observe the fluid flow inside the cell, the electrolyte solution is seeded

with 1µm neutrally-buoyant polystyrene tracer particles (Invitrogen Fluospheres,

density ρ = 1.05g/ml). The flow inside the cell is visualized (see the enlarged

side-view of the cell in Fig. 6.1 using a long distance microscope coupled to a

12bit Pixelfly megapixel video-camera. The depth of field of the microscope is

sufficiently narrow to permit focusing at different vertical planes of the cell.

Current response I to a voltage bias V is measured over a small (330Ω)

resistor in series with the cell. Under all experimental conditions the voltage

drop across the resistor is < 1% of the total voltage applied to the cell. Two

protocols are used for varying the voltage. In the first, voltage is continuously

increased up to a maximum value, Vmax, well within the overlimiting regime (Fig.

6.2). In the second protocol, voltage is raised in small jumps. The typical holding

time between consecutive jumps is 60 seconds (Fig. 6.3). We find that there is

no qualitative difference between the systems response to the two protocols, the

latter, however, is useful for analyzing the relaxation dynamics of the system.
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Figure 6.1: A schematic view of the experimental system. A horizontal transpar-

ent PMMA cell is sealed by a massive polished copper anode and a cation exchange

membrane at the bottom and top respectively. Above the membrane, a large com-

partment is sealed by a massive copper cathode. The voltage bias, V, is applied

directly to cell in series with a 330Ω resistor over which the current response, I, is

measured. The electrolyte solution is seeded with 1 µm polystyrene tracer parti-

cles. A typical enlarged view is shown on the left. The dashed line illustrates the

CP profile at the limiting current.

6.4 Results and discussion

Under a DC current, copper ions dissolve from the anode, pass through the

membrane and, upon their reduction at the cathode, deposit on it without any

additional chemical reactions involved in the process. Due to the much higher

conductivity of the anode and the membrane compared to the solution, in the

absence of motion, the electric field in the anodic compartment is directed strictly

upwards and is independent of the lateral coordinate. Correspondingly, also the

electrolyte concentration varies in the vertical direction only, increasing at the

anode and dropping at the membrane. As a result, a purely 1D conduction state

develops in this compartment with the electrolyte concentration approaching a

linear distribution with a slope proportional to the magnitude of the electric

current (Fig. 6.1). The overall amount of copper in both compartments remains

unchanged throughout the process. A typical current–voltage curve is presented

in Fig. 6.2. Voltage is increased continuously up to 1.2V at a rate of 3mV/sec.

Three regions are distinguishable in this curve: (1) The ’ohmic’ (underlimiting)
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Figure 6.2: A typical I–V curve measured by continuously increasing V at an av-

erage rate of 3 mV/sec. Three regimes are highlighted; The ’ohmic’ underlimiting,

limiting and overlimiting regime.

low current region followed by (2) saturation of the curve at the “limiting current”

caused by the diffusion limitation of ionic transport, and (3) an inflection and

transition to the overlimiting region. These three regions are typical of most

current–voltage curves of CEM [114, 115], [124].

A time series of the current passing through the membrane is shown in Fig.

6.3. In this experiment voltage is increased in small jumps of 0.1V once every

minute (black curve). The three regions corresponding to those discussed in

Fig. 6.2 are clearly visible. The notable variations in the relaxation dynamics,

however, provide additional insight into the characteristic processes dominating

each region. Usually, following a rapid rise in voltage, the current first ’jumps’

to a higher value, and then decays towards a steady-state one. The nature by

which current increases following the first two jumps is different. Rather than

decaying, the current continues to increase in an almost linear rate of ∼ 55nV/sec

after the first voltage step and ∼ 30nV/sec for the second. This increase is most

likely owed to de-passivation of the anode (gradual de-blocking under current of

the anode from the oxide film). The exponential time relaxation typical for the

following two voltage jumps (Fig. 6.3 b), corresponding to under-limiting regime

and the very beginning of the limiting current plateau, is owed to the late stage

of electrodiffusional (ED) relaxation of the concentration to the linear steady
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Figure 6.3: Variations in the current relaxation dynamics. (a) A time series of

the current(blue) passing through the membrane. Voltage (black line) is increased

in small jumps of 0.1V once every minute. Three regions are highlighted as in

Fig. 6.2. Above 10µA An increase in voltage is followed a rapid rise in current

and then slower relaxation. Three relaxation events, within the limiting region are

highlighted by dashed rectangles and correspond, from left to right to (b), (c) and

(d), respectively. (b) ED relaxation of concentration to a new linear steady state

profile leads to an exponential decay. (c) Toward the establishment of limiting

regime relaxation is characterized by quasilogarithmic decay. (d) At the developed

limiting regime the time decay changes from exponential to a power-law with a

measured exponent of −1/2. Continuous lines in b-d follow from time-dependent

1D ED simulations.

state profile. Towards the end of the limiting regime, the time decay changes

from exponential to a power-law with a measured exponent of −1/2 (Fig. 6.3 d).

Such decay is typical to initial stages of ED concentration relaxation. Within the

overlimiting regime (Fig. 6.3 a) we observe a range of linear current decay. This

type of decay is not consistent with 1D ED and is suggestive of an additional

transport mechanism, such as electroconvection (EC).

Summarizing, the verbal picture for the sequence of events in the underlimit-
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ing – limiting regimes, supported by our 1D quiescent ED calculations (solid lines

in Figs. 6.3 b-d), is as follows: The increase of voltage instantaneously results in

the increase of current due to increase of the electric field. Below, or at the very

beginning of the limiting current plateau, the increase of current induces an in-

stantaneous decrease of the interface concentration. This decrease is necessary to

guarantee a zero anion flux through the interface. While the immediate response

is always a t−1/2 decay, it is rapidly overcome by an exponential decay. This

slower decay marks the approach to a new steady state, characterized by a larger

slope of the concentration profile and a larger current. At the developed limit-

ing current, with the interface concentration at its’ limiting low value the same

limiting macroscopic steady state corresponds to different voltages. Applying a

higher voltage, and its’ corresponding instantaneous current increase, induces a

local increase of the slope of concentration profile near the membrane. The 1/
√
t

current decay characterizes the relaxation of this disturbance, whose only result

is the increase of the EDL thickness, accompanied only by a minor change in the

slope of the concentration profile, undetectable on the macroscopic scale. The

transition from exponential to 1/
√
t is typified by the intermediate logarithmic

time dependence (Fig. 6.3 c).

The transition to the overlimiting regime coincides with the voltage threshold

above which vortical structures (with wavenumber 2 mm−1 compared to the range

1.5 to 2 mm−1 obtained in numerical simulation for a realistic Debye length)

appear in the flow near the membrane surface. The sequence of events, as the

voltage is varied is shown in Fig. 6.4a. First, at small voltages (≤ 0.4V), negligible

flow activity is observed. Above a critical value, the tracer particles are entrained

in a streak of vertical rolls, originating at the membrane surface. We characterize

the size of the vortical structures through the average distance from the membrane

to the bulk of undisturbed particles, forming a clearly visible boundary in Fig.3a.

The result is shown in Fig. 6.4 c: the size of the rolls increases approximately

linearly with the voltage, in a fashion similar to the growth in the electric current.

Comparison to the current–voltage curve in Fig. 6.3 b reveals that the vortical

structures appear at the onset of the overlimiting regime and suggests the two

are manifestations of the same physical instability phenomenon.

77



6. DIRECT OBSERVATION OF NON EQUILIBRIUM
ELECTROOSMOTIC INSTABILITY

Figure 6.4: (a) Time-lapse snapshots of the experimental cell seeded with tracer

particles showing ’quasi-steady-state’ streamlines. The membrane is situated at

the top boundary of each image; for each snapshot the applied voltage (Volts)

is indicated. (b) Corresponding current-voltage curve (c) The measured (dotted

line) and numerically computed (solid line) average size (height) of the vortical

structures increases approximately linearly with the value of the bias voltage. Their

appearance coincides with the shoulder of the curve in (b)

Numerical finite difference simulations of 2D nonlinear EC were carried out for

the universal limiting formulation [46, 117] for a realistic value of dimensionless

Debye length, 10−6 (Fig. 6.5). In addition to recovering the aforementioned

features of 1D ED (Figs. 6.3b-d), for developed EC in the overlimiting region,

these calculations recover a long range of nearly linear time response (Fig. 6.5d)

reminiscent of that in the overlimiting regime in Fig. 6.3a. We note that EC yields

formation of stirred bulk flanked by two diffusion layers with voltage dependent

thickness at the solid/liquid interfaces. On the other hand, for the vicinity of

bifurcation, these calculations suggest that the nonequilibrium EO instability of

steady state CP is of subcritical type, with its characteristic current hysteresis.
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The calculated linear growth of average velocity with voltage, following the jump

at the instability threshold, compares with that in Fig. 6.4c.

Figure 6.5: Numerical simulation of EC for dimensionless Debye length 10−6

showing hysteresis: black line – way up, blue line – way down. (a) Current/voltage

dependence. (Inset: Laterally averaged concentration profiles for two voltages cor-

responding to the limiting (1) and overlimiting (2) currents); (b) flow streamlines’

pattern; (c) voltage dependence of the absolute value of the dimensionless linear

flow velocity averaged over the diffusion layer; (d) current’s relaxation in the over-

limiting regime

6.5 Conclusions

This work offers a direct experimental evidence of the theoretically predicted hy-

drodynamic instability of 1D ionic conduction [46, 117]. The related critical onset

of the flow should be clearly distinguished from that in a multidimensional set-
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ting (e.g., at a curved interface corresponding to a spherical ion exchange granule

[108, 109, 110] or undulated membrane surface [116], conductively heterogeneous

membrane surface [125] or array of nanochannels [113]). In these cases any kind

of EO initiates a flow in a thresholdless manner, that is, right upon application

of an electric field. Hence, while qualitatively nonclassical EO may be recog-

nized by its higher velocities, the precise type of the slip can only be identified

by studying the dependence of velocity on the electric field. Thus, a linear de-

pendence is expected in the classical case of quasiequilibrium EO at an originally

charged interface [126] and a quadratic dependence for quasiequilibrium induced

charge EO at an originally noncharged interface [119, 120, 121]. On the other

hand, for the extended charge EO, cubic field dependence is expected, switching

at higher voltage to a quadratic one with the tangential current density variation

as a driving factor instead of the electric field [46, 117]. Namely, this type of flow

has been reported recently at an array of nanochannels [113]. Likely, many more

reported flows, attributed in the past to other mechanisms, belonged in fact to

this category [111, 112].
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Chapter 7

Summary and outlook

7.1 Summary

The results described Chapter 2 demonstrate the flexibility and the control of

superhydrophobicity that can be achieved using electric fields. At low voltages,

the reversible bending of the micromenisci allows for detailed tuning of both hy-

drodynamic slip [66] and of optical diffraction from such surfaces [55].For the

irreversible transition to the Wenzel state, we clearly identified that depinning

of the contact lines determines the critical voltage. Combined with the criterion

for the co-existence of the Cassie-Baxter state and the Wenzel state, in Chapter

3 we have demonstrated local and reversible switching between the two compet-

ing wetting morphologies. Howewer the local reversible switching presented in

Chapter 3 needs more systematic study. It was also shown that the shape os-

cillations of the droplet under low frequency ac electric filed (< 100Hz) are able

to switch the droplet from the partial Wenzel to the Cassie-Baxter state too.

Our numerical and experimental study in Chapter 4 shows that electrohy-

drodynamic instabilities are an important limiting factor for the stability of the

Cassie-Baxter state on superhydrophobic surfaces exposed to electric fields. Elec-

trohydrodynamic instabilities compete with the classical transition criterion due

to contact line depinning from the edges of the surface topography, which dom-

inates for small contact angles. For depth-to-width aspect ratios of the surface

topography exceeding 2, the critical Taylor cone-like shape of the surface becomes

independent of the aspect ratio. This implies a constant critical contact angle
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delineating depinning and electrohydrodynamic instabilities. For superhydropho-

bic surfaces involving geometric overhangs that suppress contact line depinning,

electrohydrodynamic instabilities are likely to be the dominant instability mech-

anism.

We also demonstrate the nonspherical nature of the liquid-gas interface under

an applied electric field. The reason for that is a nonhomogenous distribution of

the electric forces along the liquid interface. This leads to non-spherical defor-

mation of the interface, contrary to a pressure driven collapse on conventional

superhydrophobic surfaces [63, 73], in which the shape of liquid interface is gov-

erned by only Laplace pressure.

In the Chapter 5, we first validated electrowetting as a tool to study wetting

problems of non-flat geometries. Later on, relying of this validity, we confirmed

the equilibrium morphologies of a classic wetting geometry: drop on a sphere as

a function of governing variables drop volume and contact angle, experimentally

and analytically.

For validation purposes, the influence of substrate geometry on the electrowet-

ting response is studied systematically considering the effect of drop volume hence

relative curvature. For different drop volumes corresponding to different relative

drop to substrate curvatures, the electrowetting response stayed the same, in-

dicating that in the experimental parameter regime covered, curvature effects

can be ignored. Comparing the response of contact angle to the electrowetting

number (η) for flat, cylindrical and spherical geometries, we conclude that sub-

strate geometry has no influence on the electrowetting response. Our results

indicate that the Lippmann-Young equation holds for spherical substrates as for

flat substrates within the experimental parameters examined. Furthermore, we

hypothesize that the effect of substrate curvature can be ignored for cases where

the dielectric layer thickness is much smaller than the characteristic dimension of

the geometry such as the radius of curvature of surface (δ � κ2).

Relying on applicability of the electrowetting on non-flat surfaces, the equi-

librium morphologies of two competing geometries is studied by calculating the

effective interfacial energy of both morphologies analytically and experimentally.

Our results show than the ”partially engulfing” morphology is the energetically

more favorable and the mechanically stable morphology as the absolute effective
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interfacial energy of the engulfing morphology is greater that the ”partially en-

gulfing” morphology under all conditions. Only for vanishing contact angles, the

effective interfacial energy of the ”completely engulfing” morphology is compa-

rable to the ”partially engulfing” morphology. It is noteworthy to mention that

application of electrowetting to wetting problems in complex geometries opens

alleys to explore industrially relevant problems such as mechanical stability of

liquid bridges between non-flat geometries such as spheres or fibers.

Chapter 6 offers a direct experimental evidence of the theoretically predicted

hydrodynamic instability of 1D ionic conduction [46, 117]. The related critical

onset of the flow should be clearly distinguished from that in a multidimensional

setting (e.g., at a curved interface corresponding to a spherical ion exchange

granule [108, 109, 110] or undulated membrane surface [116], conductively het-

erogeneous membrane surface [125] or array of nanochannels [113]). In these

cases any kind of EO initiates a flow in a thresholdless manner, that is, right

upon application of an electric field. Hence, while qualitatively nonclassical EO

may be recognized by its higher velocities, the precise type of the slip can only

be identified by studying the dependence of velocity on the electric field. Thus,

a linear dependence is expected in the classical case of quasiequilibrium EO at

an originally charged interface [126] and a quadratic dependence for quasiequilib-

rium induced charge EO at an originally noncharged interface [119, 120, 121]. On

the other hand, for the extended charge EO, cubic field dependence is expected,

switching at higher voltage to a quadratic one with the tangential current density

variation as a driving factor instead of the electric field [46, 117]. Namely, this

type of flow has been reported recently at an array of nanochannels [113]. Likely,

many more reported flows, attributed in the past to other mechanisms, belonged

in fact to this category [111, 112].
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7.2 Outlook

In this thesis we describe electrowetting as a tool to manipulate liquid interfaces.

In particular we showed that electrowetting can be used to achieve reversible

transitions between Cassie-Baxter and Wenzel states. Applied electric field not

only affects the equilibrium shape of a liquid interface, it also gives rise to elec-

trokinetic effects of fluids near solid walls.

Chapter 2 of provides understanding of the microscopic mechanism control-

ling the properties of the superhydrophobic state under electrowetting conditions

and in particular the stability limit of the Cassie-Baxter state. Such a detailed

understanding is crucial to reach the holy grail of reversible switching between

these states. Electrowetting induced reversible transitions have several advan-

tages compared to other approaches (partial evaporation [33], violent mechanical

shaking [60] etc.). It offers opportunities for fast and precise fine-tuning of the

wetting state. Based on our findings presented in Chapter 2, in Chapter 3 we

present two approaches for achieving reversibility. In particular a system with

patterned electrodes has great potential as a simple, fast in operation (the tran-

sition time from the Wenzel to the Cassie-Baxter state is 5 -10ms) technique for

reversible switching between Cassie-Baxter and Wenzel states. It is also easy to

implement in microfluidic or Lab-on-a-Chip systems. However, more research is

needed to determine the optimal set of parameters such as width of the elec-

trodes, the distance between them, etc.. Our results also open up prospective

Figure 7.1: Sketch of a single cell of an electrowetting induced microscreen. The

red color represents transparent electrode.
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for development of several optoelectronic devices: an electrowetting induced seg-

mented display for instance, as sketched in Fig.7.1. Here we use the fact that at

Cassie-Baxter state the meniscus reflects the light appearing bright, whereas at

the Wenzel state it turns dark. Thus, by turning on or off individually address-

able segments, it is possible to produce simplified representations of the Arabic

numerals or letters in small scales. The characteristic size of the segments in this

device may reach down to 10X10µm.

If in experiments presented in Chapter 4 the ambient air is replaced by non

transparent oil the system can be used as an elecrowetting driven optical switch

with tunable aperture. This idea was developed by our colleagues [127]. Fig. 7.2

shows a schematic of the optical switch.

Figure 7.2: Schematic side view of the electrowetting driven optical switch and

aperture.

When a voltage is applied between the water phase and the lower substrate

(electrode), an electric field is generated within the oil phase. Due to the result-

ing electric stresses the water-oil interface is deflected downwards. As the volt-

age increases, the deflection increases until it reaches a critical threshold. This

threshold value depends on the aspect ratio between the radius of the hole and

the height between the glass plates as well as the physical properties of the fluids

[]. Once the threshold is reached, the meniscus becomes unstable and abruptly

snaps down to the lower substrate, where it creates a transparent spot (Fig. out1

b). The dynamics of this process are governed by the balance of Maxwell stress,

surface tension and viscous stresses. When the voltage is turned off the water/oil

interface returns back to its original position since the presence of oil provides low
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hysteresis. The resulting optical switch can be tuned/operated by applying a DC

voltage, an AC voltage at 1kHz (or higher) or by applying amplitude modulation.

The optical switch can attain 95% intensity attenuation and has a response

time of ∼ 2 and ∼ 120ms for switching on and off, respectively.

The same system can be used also as an optical aperture. Its diameter is

controlled by the modulation frequency and maximum amplitude of the applied

voltage. Moreover, the optical switches with tunable aperture as presented here

have great potential in optical communication and in display devices, because

they can be arranged in an array of individually addressable apertures. In Fig.

7.3 we demonstrate this potential by presenting a device consisting of two op-

tical switches/apertures, positioned close to each other, that can be addressed

independently without any cross talk.

Figure 7.3: Two optical switches, positioned close together, can be addressed

independently. .

In Chapter 5, we validated electrowetting as a tool to study wetting prob-

lems of non-flat geometries. These findings open alleys to explore industrially
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relevant problems such as mechanical stability of liquid bridges between non-flat

geometries such as spheres or fibers. I believe that these results may open up

possibilities to further extend the notion of utilizing wettability to synthesize

complex colloidal systems.

Experimental results of Chapter 6 suggest an accurate quantitative experi-

mental study of the vicinity of the instability threshold as a natural continuation

of the current preliminary qualitative report. Another natural follow up should

concern the study of the dependence of the physical parameters of the system

(ionic valencies and ionic ’viscous’ radii, dielectric permeability, ionic diffusivities

ratio, etc) on instability threshold and nonlinear flow characteristics affecting the

crucial dimensionless combinations in the system, such as the Peclet number and

the dimensionless Debye length in the system.
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Samenvatting

Het hoofdthema van dit proefschrift is de elektrische manipulatie van

vloeistoffen aan grensvlakken. Dit proefschrift presenteert zowel ex-

perimenteel als numeriek onderzoek aan de toepassing van electrowet-

ting op superhydrofobe oppervlakken. In het bijzonder tonen onze

resultaten de weg naar omkeerbare omschakelingen op superhydro-

fobe oppervlakken. Enkele aspecten van elektroconvectie worden ook

beschreven in dit werk.

De resultaten beschreven in Hoofdstuk 2 tonen de mate van flex-

ibiliteit en beheersing die worden verkregen over de superhydrofo-

biciteit bij gebruik van een elektrisch veld. Bij lage spanningen zorgt

de omkeerbare buiging van de micromenisci voor een precieze afstem-

ming van de hydrodynamische slip [1] en de optische diffractie van deze

oppervlakken [2]. We hebben duidelijk aangetoond dat het loslaten

van de contactlijnen het kritieke voltage bepaalt voor de onomkeer-

bare overgang naar de Wenzel toestand. In combinatie met de voor-

waarde voor co-existentie van de Cassie-Baxter en Wenzel toestanden,

laten we in Hoofdstuk 3 een gelokaliseerde en omkeerbare omschake-

ling tussen de twee bevochtingstoestanden zien. Deze gelokaliseerde,

omkeerbare omschakeling vereist een meer systematisch onderzoek.

We hebben ook laten zien dat oscillaties in de druppelvorm ten gevolge

van een laagfrequent ac elektrisch veld (∼ 100Hz) ook een overgang

van de gedeeltelijke Wenzel toestand naar de Cassie-Baxter toestand

kunnen veroorzaken.

Ons numeriek en experimenteel onderzoek in Hoofdstuk 4 laat zien dat

elektrohydrodynamische instabiliteiten een belangrijke limiterende fac-

tor zijn voor de stabiliteit van de Cassie-Baxter toestand op superhy-
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drofobe oppervlakken onder invloed van een elektrisch veld. Elekrohy-

drodynamische instabiliteiten wedijveren met de klassieke overgangsvoor-

waarde (het loslaten van de contactlijn aan de randen van de opper-

vlaktetopografie), welke de overhand heeft bij kleine contacthoeken.

Wanneer de diepte-breedte verhouding van de oppervlaktetopografie

groter is dan 2, wordt de kritieke ”Taylor kegel”-achtige vorm van

het oppervlak onafhankelijk van de diepte-breedte verhouding. Dit

betekent dat er een constante kritische contacthoek is die het regime

van het loslaten van de contactlijn en elektrohydrodynamische insta-

biliteiten van elkaar scheidt. Voor superhydrofobe oppervlakken met

geometrisch overhangende delen, welke het loslaten van de contactlijn

onderdrukken, is het aannemelijk dat elektrohydrodynamische insta-

biliteiten het dominante instabiliteitmechanisme zijn. We laten ook

zien dat het vloeistof-gas grensvlak onder invloed van een toegepast

elektrisch veld niet bolvormig is. De reden hiervoor is een niet-

homogene verdeling van de elektrische krachten langs het grensvlak.

Dit leidt tot een niet-bolvormige vervorming van het grensvlak, in

tegenstelling tot een druk-gedreven overgang op traditionele superhy-

drofobe oppervlakken [3, 4], waar de vorm van het grensvlak enkel

wordt bepaald door de Laplace druk.

In hoofdstuk 5 valideren we eerst electrowetting als een methode om

bevochtiging van niet-vlakke geometrien te bestuderen. Vertouwend

op deze geldigheid, bestuderen we vervolgens - zowel experimenteel

als analytisch - de evenwichtstoestanden van een klassieke bevochtig-

ingsgeometrie, namelijk een druppel op een bol, als functie van de

beschrijvende variabelen, het druppelvolume en de contacthoek.

Als validatie-experiment hebben we systematisch de invloed van sub-

straat geometrie op het electrowettinggedrag bestudeerd, met het

oog op het effect van druppelvolume, en de daaruit volgende re-

latieve kromming. Het electrowettinggedrag is gelijk voor verschil-

lende druppelvolumes, wat overeenkomt met verschillende krommin-

gen van de druppel relatief tot het substraat. Dit laat zien dat
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krommingseffecten verwaarloosd kunnen worden in het bestudeerde

bereik van parameters. Als we de respons van de contacthoek op

het electrowettinggetal(η) voor vlakke, cilindrische, and bolvormige

geometrien vergelijken, dan kunnen we concluderen dat de geome-

trie van het oppervlak geen invloed heeft op het electrowettingge-

drag. Onze resultaten laten zien dat de Lippmann-Young vergelijking

niet alleen geldig is voor vlakke oppervlakken, maar ook - binnen het

bestudeerde parameterbereik - voor bolvormige oppervlakken. Verder

veronderstellen we dat het effect van oppervlaktekromming verwaar-

loosd kan worden in gevallen waar de dikte van de dilektrische laag

veel kleiner is dan de karakteristieke dimensie van de geometrie, zoals

de kromtestraal van het oppervlak (δ � κ2).

Vertrouwend op de toepasbaarheid van electrowetting op niet-vlakke

oppervlakken, bestuderen we de evenwichtstoestanden van twee con-

currerende geometrien zowel experimenteel als analytisch, door de

effectieve oppervlakte-energie van beide toestanden uit te rekenen.

Onze resultaten tonen aan dat de ”gedeeltelijk omsluitende” toes-

tand energetisch voordeliger en mechanisch stabieler is, omdat de

absolute effectieve oppervlakte-energie van de volledig omsluitende

toestand onder alle omstandigheden groter is dan die van de ”gedeel-

telijk omsluitende” toestand. Het is noemenswaardig te vermelden

dat de toepassing van electrowetting op bevochtigingsvraagstukken

voor ingewikkelde geometrien de weg vrijmaakt om industrieel rele-

vante vraagstukken te verkennen, zoals de mechanische stabiliteit van

menisci tussen niet-vlakke substraten zoals bollen en vezels.

Hoofdstuk 6 biedt direct experimenteel bewijs voor de theoretisch

voorspelde hydrodynamische instabiliteit van 1D ionische geleiding

[5, 6]. De randvoorwaarde voor het opstarten van de stroming moet

expliciet onderscheiden worden van zijn multi-dimensionele equiva-

lent (bijvoorbeeld aan een gekromd oppervlak zoals in een bolvormig

ionenuitwisselingsgranulaat [7, 8, 9] of een golvend membraanopper-

vlak [10], aan een membraanoppervlak met lokale verschillen in gelei-

105



dbaarheid [11], of in een rij nanokanalen [12]). In deze gevallen zorgt

iedere vorm van electro-osmose (EO) bij toepassing van een elek-

trisch veld voor een stroming, zonder dat het elektrisch veld een mini-

mumwaarde moet overschrijden. Dus, hoewel niet-klassieke EO kwal-

itatief herkend kan worden aan de hogere stroomsnelheden, kan de

exacte vorm van slip alleen gedentificeerd worden door de elektrisch

veld-afhankelijkheid van de snelheid te bestuderen. We verwachten

een lineaire afhankelijkheid in het klassieke geval van quasiequilibrium

EO aan een oorspronkelijk geladen grensvlak [13] en een kwadratis-

che afhankelijkheid voor quasiequilibrium EO met genduceerde lad-

ing aan een oorspronkelijk niet-geladen grensvlak [14, 15, 16]. Aan

de andere kant wordt een derdemachts veldafhankelijkheid verwacht

voor de extended charge EO, welke voor hogere voltages overgaat

in een kwadratische afhankelijkheid met de tangentile variatie in de

stroomdichtheid als drijfveer in plaats van het elektrische veld [5, 6].

Dit laatste stromingstype is recent beschreven voor een rij nanokanalen

[12]. Het is aannemelijk dat meer beschreven vloeistofstromingen, die

in het verleden aan andere mechanismes zijn toegeschreven, eigenlijk

in deze categorie thuishoren [17, 18].

106



Acknowledgements

I would like to express my sincere gratitude to everyone who helped me

during my PhD and even after. All your support and encouragement

is highly appreciated.

First of all I would like to thank my advisors Prof. Frieder Mugele

and Prof. Rob Lammertink for giving me the opportunity to work on

this project. Normally most of PhD students who have two advisers

intend to complain, since the advisors not necessarily have the same

views on the project, and in this kind of situations the student is the

one who suffers. This is definitely not my case! Instead, I have got

great freedom that allowed me to pursue this work. I would like to

particularly thank Frieder for his innovative ideas and guidance during

the project. I have learned from him a lot about scientific precision,

how to plan and construct papers and give presentations. I would

like to thank Rob for his great support. His advises and ability to

motivate and cheer up people was invaluable during the times when

I most needed it.

I would like to thank all past and present members of PCF and MTG

groups. Since the first day I felt welcomed to the Netherlands and to

the group particularly. It was a pleasure to be part of this wonderful

social environment.

Thanks to Adrian and Florient who thought me how to do high

quality experimental research. Thanks to Chandra, Jung-Min, Amy,

Christophe, Alvaro, Burak, Can, Jolet, Rielle, Hao, Sissi, Arun, Olga,

Pablo, Omkar, Dhirendra, Helmut, Jane, Dieter, Huub, Mariska, Hao,

Dileep (I hope did not forget anyone). I have really enjoyed working

107



with you in the lab and collaborating on numerous projects. Also

thanks to Daniel for nice samples.

Special thanks go to Jolet and Dileep, my best office mates of all

times. It was great pleasure to share the office with you.

Another special thanks to SFI group members: Rob, Jigar, Ineke,

Can, Elif and Ninke for the nice working atmosphere.

I would like to thank my ex-flatemates. Thank you Benjamin for deli-

cious French cuisine you offered me. Thank you Burak and Annemirl

for countless filling dinners with long-lasting pleasant conversations

around the dinner table and much more. I enjoyed them a lot. Burak

for me was not only a colleague and flat mate. He is a good friend I

could always count on. Thanks to another friend of mine and my last

flat mate Shavarsh. I really enjoyed your company during our trips

to Zurich and Copenhagen, also long lasting PES tournaments every

weekend.

Another person whom I am grateful is Can. He is a nice guy and

good friend, who is always ready to lend a hand, listen, give a good

advice or cheer up. I also would like to thank Jung-Min. His ability

to model everything was amazing. It was a great pleasure to work

with you and also to test your delicious Korean dishes.

Thanks to Jolet, Rielle, Dieter, Mariska and Huup with whom I en-

joyed many ”over coffee break” discussions. I liked very much our

gathering around the table and playing board games until late night.

Special thanks go to Helmut who is a good example of a researcher

dedicated to his work. But this does not mean that he was in the

lab 7/24. We had excellent dinners and weekend trips organized by

him. I really enjoyed the winter holydays in Austria where I tried

snowboarding for the first time in my life, and now I cannot imagine

me without it.

108



Thanks to Secretaries of PCF, MTG and later on SFI groups Annelies,

Greet and Ninke for helping me to cope with all sorts of documents

and procedures I had to face during past 5 years.

Outside the work I spent some time playing my favorite game: football

(or footzall). UT football club VV Drienerlo not only gave me the

opportunity to play my favorite game and meet new people, but also

to travel all over the country.

Last but not least, I would like to thank my family: my father Samvel,

mother Susanna, and brother Edgar with his wife Ksenya for their

continuous support and encouragement. I would like to thank my

wife Margarita for her love, patience and support especially during

my thesis writing.

109



About the author

Gor Manukyan was born on 24 of Aprin 1983 in a small town Mar-

tuni, Armenia. After graduating A. Shirakaci high school in 1999 he

was accepted in physics department of Yerevan State University. Four

years later he received bachelor degree in laser physics. In 2004 Gor

was accepted to Albert Katz international school of desert research,

Ben-Gurion University of Negev, Israel. In 2004 he was awarded Mas-

ter of Science degree (Cum Laude). The same year he moved from

dry Israel to rainy Netherlands to start his PhD research in groups of

Physics of Complex Fluids and Membrane Technology Group under

supervision of Prof. Frieder Mugele and Prof. Rob Lammertink. The

results of his work are presented in this dissertation.

110


	1 Introduction
	1.1 Surface tension
	1.2 Superhydrophobic surfaces
	1.2.1 Cassie-Baxter state
	1.2.2 Wenzel state

	1.3 Transitions between Cassie-Baxter and Wenzel states
	1.4 Liquids in an electric field
	1.4.1 Electrowetting
	1.4.2 Electrodiffusion

	1.5 Outline of the thesis

	2 Electrical switching of wetting states on superhydrophobic surfaces
	2.1 Abstract
	2.2 Introduction
	2.3 Materials and methods
	2.3.1 Sample preparation
	2.3.2 Experimental setup

	2.4 Observations
	2.5 The model
	2.6 Results and disscussion
	2.7 Conclusions

	3 Electrically induced reversible transitions on superhydrophobic surfaces
	3.1 Abstract
	3.2 Introduction
	3.3 Wenzel to Cassie-Baxter transitions using low frequency oscillations
	3.3.1 Materials and methods
	3.3.2 Observations

	3.4 Reversible transitions using patterned electrods
	3.4.1 Materials and methods
	3.4.2 Observations

	3.5 Conclusions

	4 Electric field driven instabilities on superhydrophobic surfaces
	4.1 abstract
	4.2 Introduction
	4.3 The model
	4.4 Materials and methods
	4.5 Results and discussion
	4.6 Conclusion

	5 (Electro)-wetting of a drop on a sphere
	5.1 Introduction
	5.2 Materials and methods 
	5.2.1 Electrowetting setup 
	5.2.2 Substrate preparation 
	5.2.3 Image processing 
	5.2.3.1 Contact angle measurements
	5.2.3.2 Effective interfacial energy calculations from experimental data

	5.2.4 Analytical effective interfacial energy calculations 

	5.3 Results and disscusion
	5.4 Conclusions

	6 Direct observation of non equilibrium electroosmotic instability
	6.1 Abstract
	6.2 Introduction
	6.3 Materials and methods
	6.4 Results and discussion
	6.5 Conclusions

	7 Summary and outlook
	7.1 Summary
	7.2 Outlook

	References
	Samenvatting
	Acknowledgements
	About the author
	Cover_Gor.pdf
	Page 1


